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Figure 14. Time averaged velocity and resolved rms velocity profiles. 72 x 42 x 52 mesh. Symmetry
plane z/H = 0.5. LES using the dynamic model. Solid lines: (&);/Usn; dashed lines: upms/Usp; +:
experimental mean velocity; o: experimental fluctuations.

are used to when using traditional eddy viscosity models where high turbulent viscosity is connected
with flat, smeared-out velocity profiles.

Some longitudinal vortices are visible in Fig. 17b. It seems like the mesh is too coarse in the z-
direction. Near the ceiling in the middle it looks like the flow is trying to form longitudinal vortices,
but that the grid resolution is insufficient. From Table 2 we find that the maximum cell-size in
the spanwise direction expressed in viscous units is Azpezus /v ~ 150. From experiments (34] and
DNS-simulations [35] it is known that the width (diameter) of these longitudinal vortices, caused
by alternating low- and high-speed streaks in the spanwise direction, is around 100 viscous units.
Clearly the meshes used in the present work is too coarse to capture these phenomena. As noted
by Piomelli [36], it may not be necessary to capture these effects if we only are interested in mean
velocities and rms fluctuations.

In Fig. 18 zoomed views of vector plots in the upper-right and the lower-left corners are presented.
The recirculation bubble near the ceiling is nicely captured. In the recirculation bubble near the floor
the velocities are much smaller (< 0.03U;,), and we can see three vortices.

The resolved @ velocities versus time at four chosen points are presented in Fig. 19. It can be seen
that the fluctuations in @ are strong. In the middle of the room (Fig. 19b) it is not meaningful to define
a “mean” velocity (@), since @/Us, fluctuates between 0.15 and -0.23 and the time averaged velocity is
close to zero. It can also be seen that the frequency of @ is much higher in the wall jet near the ceiling
(Figs. 19a,c) than in the back-flow region close to the floor (Fig. 19d). In addition to the large-scale
fluctuations visible in Fig. 19 we have small-scale fluctuations which can be seen in Fig. 20. These
small-scale fluctuations are generated by the inlet boundary conditions, where a randomized velocity
field is prescribed (see Eq. 28). If constant flow conditions (in time) are prescribed, the small-scale
fluctuations go away. Also the time history of the @ velocities (like that shown in Fig. 19) becomes
less chaotic.

In Fig. 21 the C coefficient in the dynamic model (see Eq. 17) is presented. Figure 21a shows the
time history of C' at two chosen points, one point in the wall jet close to the ceiling, and one point in
the boundary layer close to the floor. The variation of C' is fairly big, especially close to the floor where
the amplitude of the fluctuations is larger than (C);. It should be noted that at these two chosen
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Figure 15. Time averaged velocity and rms velocity profiles. 102 x 52 x 52 mesh. Symmetry plane
z/H = 0.5. LES using the dynamic model. Solid lines: (i);/Uyn; dashed lines: /Uin; +: experi-
mental mean velocity; o: experimental fluctuations.

point it is only at ¢ ~ 260 that C goes negative. (As mentioned in the beginning of Sub-section 5.2.2
the total viscosity is not allowed to go negative.) In Fig. 21b the instantaneous C versus y is shown,
and it can be seen that C is small at the floor and ceiling as it should. The average value of C in the
y-direction is approximately 0.04 which in the Smagorinsky model corresponds to

Cs =vC =02

The present values on C are smaller than those obtained by Zang et al. [16] and approximately two
times larger than those found by Yang and Ferziger [33], which confirms that C is flow dependent.

The point of separation zsep along the ceiling and the floor are shown in Fig. 22. The spanwise
averaged values are shown (solid lines). The frequency of zp is similar to that of the velocity itself.
"The location of separation along the ceiling is fluctuating very much whereas it is more stable along
the floor. In Fig. 16 the @-velocities at the centerline along the ceiling (y = H — h/2) and the floor
(y = h/2) are shown. The dotted lines in Fig. 22 show the z-location where those @-velocities change
sign versus time. It occurs both close to the ceiling and close to the floor that @ does not change sign
but that the flow continues all the way to the opposite wall. It happens only once close to the ceiling
(t ~ 120 in Fig. 22a) but several times close to the floor.

The two-point correlation coefficient Ry, (y,y0) [37)

(v (y)u"(yo))s
VAW )P/ (W (90))?):e

is shown in Fig. 23. Using the two-point correlation coefficient we can compute the integral length
scale A from [37]

Ryn i (y,y0) =

(29)

Y2 '
A= Ru”,u” (y, yo)dy. (30)
!
The integration limits are taken at the point yo and away from the wall, which means that for the
points at y/H = yo/H = 0.92 we have y1/H = 0.92, y2 = 0, and for the points at y/H = yo/H = 0.14
we use y1/H = 0.14, yo/H = 1.0. The integral length scales for four points are given in Table 3.



21

o o

0.4

0.3

0.2

-0.3f

1.5

0.5

-0.2f

a) --0.40

8|

8

|

0.5.

72 x 52 x 26 mesh; o: experiments. a) y = H — h/2. b)

Time averaged @ velocity along the ceiling and the floor. The dynamic model. z/H

16.

Figure

dashed lines:

.
)

Solid line: 102 x 52 x 52 mesh

y=h/2.

NSl

R e

Pea NN A LN 7 “
WL LSS~

r -y

N R

SN vcuandBin s

........ P,

-
et eyt AAANANN i)

e s VAN

=~ =~y
i N NN

Mz g ppmines o s o2 2 e s N KRNRAR SRR

f, AN s mes gy et & SONAS iR na ALY

~ NN NN g
SNV
SNNN AW
s~~~
< ~sasNTTE
R N AR RRR RS
~ o<~y
o N UNAANAT
~ = oSNNI

~ e ann I NRARN A

Willrsroocee e s /1

[ N
T TE PR I I
1..____§\\\\\\\\..,.:,/ o oe N
\?fnz\\\\\\ ANV L i N
a7/ /TN Yy BN
.\l‘\\\\\\\///f:,.- NN
yaur WlSvwem - o M N
ql.::’z“..\.lfpf/l\\:l//z» & N
Il//l\:./l,/, s NN

N IS TN

VY

NN

[N

“ sy

NN

Coay

vos N

PR

-

=

o

MIITTTTTTTTTT TN S O
it

sl
ittt
TSR RRE
MMM L
azaﬁ.,ﬁ//ﬁﬁ R s &
.az:::jj: A

ddaa__

I
Mitrrrtty
't

ﬂ
ﬁ
fMtttrereey

It

[
i

-
~

~
-

’
-
Za
-

-

& 3
o o

0.85¢

0
b
o

y/H

0.75r -
0.7¢

0.8

0.4

1.7 1)

1.6

1.5
c/H

4

1

1.3

z/|H

Figure 17. Velocity vectors at a given time. 102 x 52 x 52 mesh. LES using the dynamic model. a)

2/H =0.5. b) ¢/H = 1.5,



22,

1.05

0.95}
0.9
0.85
0.8}
0.75}
0.7k
0.65}

=

F——————=> UN_in=1.0

e e R e e i
e T T T T T T T NN
e T T T T TN T T T T S NN NS
e e e I e S S S5 Y
e e A R IS ST \

N N N N NONONNNSNNNNNNSS

2.8 2.9 3

i

27

b)

0.3

0.25/

0.2

0.15

0.1

0.05}* \\

_‘; U/U_i;l =0.1
R N

R R e \\\\\\\\\\\:

[« 2B
;f SRS
_T’T‘ f/ e e NN \\\\\\\N\\\
\\\*- LI TN \\\\\\\N\\\
-1\\\\\\\\ W R OB E e “N\\;\—

ARARN —

~ NG =
SN
AN

[ N \

~

AN\

0.05 0. 02 025 03

z/H

Figure 18. 102 x 52 x 52 mesh. Instantaneous velocity vectors. z/H = 0.5. a) upper-right corner. b)
lower-left corner.

0.8 0.15
0.7} 0.1
ol il | 0.05}
0.5 I q
7}@ ' j ‘ -0.05f
Uin o4 ‘ - " 0.1}
03 0,15
02 0.2
a) "o 100 200 300 400 800 600 b) %% 00 200 300 400 500 600
0.9 -0.05
0.8k 0.1
o7l -0.15
0.2
0.6
_ 0.25
u(t) 0.5 |
0.3
i &4 -0.35
0.3 0.4
c) *% 100 200 300 400 500 600 d) %100 200 300 400 500 600
t[s] t[s]
Figure 19. Time history of the @ at four chosen cells. 72 x 52 x 26 mesh. 2/H = 0.5. Dynamic
model. a) z/H = 1.0,y/H = 092, b) «/H = 1.0,y/H = 0.5, ¢) z/H = 2.0,y/H = 0.92, d)

g H = 20,4/ H = 0.14,



23

0.66
0.64f
0.62

{~{]
—~
5
N
o
o

0.56¢

00 401 402 403 404 405
t[s]

Figure 20. Time history of the @ at z/H = 2.0,y/H = 0.92, z/H = 0.5 during a short time. 72x52x26
mesh. Dynamic model.

0.8}
0.6
C
0.4}
0.2}
a) 005 100 150 200 250 00 b) -Foz 0 002 004 006 008
t[s] C

Figure 21. The C coefficient in the dynamic model. z/H = 1.0,z/H = 0.5. 102 x 52 x 52 mesh. a)
Time history of C at two points. Solid line: y/H = 0.14; dotted line: y/H = 0.92. b) Instantaneous
vertical profile of C.

? i T . - 1.5 . s ;
__IL' 1
15
05
, _
05 ‘ A - . . , Lo
a) 0 50 100 . 150 200 250 b) 0 50 100 150 200 250
kg ts

Figure 22. Solid line: spanwise averaged point of separation (Tgep/H),; dotted line: point at the
centerline z/H = 0.5 where %(n = h/2) changes sign. n denotes distance from ceiling and floor,
respectively. 102 x 52 x 52 mesh. a) Ceiling. b) Floor.



24

. .
. .
0.8
N

0.6 ‘,’

LS

0.4r

0.2r

1.5

Figure 23. Two-point correlations Ry 4 (y,90). 72 X 52 x 26 mesh. Dynamic model. Symmetry plane
z0/W = 0.5. Solid line: zo/H = 1.0,y9/H = 0.92; dotted line: zo/H = 2.0,y9/H = 0.92; dashed line:
zo/H = 1.0,y0/H = 0.14; dash-dotted line: zo/H =2.0,y0/H = 0.14.

The correlation coefficient for the two points in the wall jet at zo/H = 1.0 and z9/H = 2.0 are
rather similar near the wall where the peak near the ceiling at zg /H = 2.0 is slightly wider because
the thickness of the wall jet is larger. However, the integral lengths are very different (see Table 3)
because the negative tail in the Ry 4 (y, o) curve at xo/H = 1.0 is much larger than at zo/H = 2.0.
This means that at zo/H = 1.0 high @ velocities in the wall jet are correlated with high negative @
velocities close to the floor whereas this is not the case at z /H = 2.0. We find a similar difference for
the two points close to the floor. The negative part of Ry (y,10) is so strong at zo/H = 2.0 that
it almost annihilates the positive part of Ry w1 (y,y0), which results in a integral length scale close to
zero, see Table 3. The integral length scale at zo/H = 2.0 is considerably larger mainly because there
is good correlation between the @ velocity close to the floor and the @ velocity in the stagnant region
up to y/H ~ 0.6.

The probability density function of @ is shown for four points in Fig. 24, two points in the wall jet
and two points in the boundary layer close to the floor. For the points in the wall jet (Fig. 24a) the
probability function show a preferred value of % showing that the flow has a well defined mean velocity
and that the velocity is fluctuating around this mean value. Close to the floor (Fig. 24b) it is hard to
find any preferred value of & which shows that the flow is irregular and unstable with no well defined
mean velocity and large fluctuations.

In Fig. 25 the power density spectrum for the resolved streamwise fluctuation (u")? is shown. In
fully turbulent flow it should behave as & oc n(~5/3) (inertial region) which is included as a dashed
line. We can see that there is some tendency to inertial region close to f = 0.2. This value agrees well
with measurements by Sandberg [38]. The sharp decrease of ® shows that the subgrid model is doing
a good job in extracting energy from the resolved flow. The reason why we do not have any distinct
inertial region in the spectra may well be connected to insufficient grid resolution. As mentioned on
page 20, in connection with the discussion of Fig. 17b, the streamwise vortices in the wall jet region
are not resolved properly.

6. Conclusions and Future Work

A numerical procedure for Large Eddy Simulations has been presented for prediction of recirculating
flows. A simple Smagorinsky model and a dynamic model was tested. The following conclusions can
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zo/H yo/H Zof/H | Ag/H | Ay/H | A, /H
1.0 0.92 0.5 - 0.05 -
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Figure 24. Probability density function of @. 72 x 52 x 26 mesh. The dynamic model. a) Solid line:
z/H = 1.0; dotted line: z/H = 2.0. b) Solid line: z/H = 1.0; dotted line: z/H = 2.0;
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be drawn:

e The simple Smagorinsky model was found to be inadequate, because the results were very
dependent on the Smagorinsky-constant

e The pressure equation requires some 80 % of the total CPU-time

* The results obtained with the dynamic subgrid model gives results in good agreement with
experiments

6.1. Future Work

In an ongoing work [39] we have found the multigrid solver solves the pressure equations more than
10 times faster on fine meshes (1 million nodes). We are also working on solving the whole equation
system implicitly [39] using the same multigrid solver for the pressure. In the explicit method used in
the present work the CFD-number must for stability reasons be below 0.4. With an implicit method
the CFL-number is restricted only by concern of accuracy. Using CFL-number of one the implicit
method is somewhat faster than the explicit method. If the CFL-number is allowed locally to exceed
one (say 2), the implicit method gives a further speed-up of more than two.
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