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1. Introduction

Abstract

Computer-simulated persons (CSPs) with respiratory systems have been devel-
oped for microclimate analysis around the human body and inhalation exposure
analysis, for detailed assessment of comfort and health risks in indoor spaces.
This study examined and validated the prediction accuracy of a CSP, for precise
estimation of indoor environmental quality (IEQ). The flow-field prediction accu-
racy was thoroughly examined in a grid analysis using the CSP and a thermal
manikin for benchmarking. The model incorporated unsteady breathing and
human postural sway, and assessed their impact on the microclimate around the
human body. The numerically estimated flow field was validated using experi-
mental particle image velocimetry (PIV) data, with a detailed grid independence
test. Considering the practical use of the respiratory tract model for the inhala-
tion exposure risk assessment, the prediction accuracy of particle transport and
deposition analysis was examined using previously published in vivo experimen-
tal results. This analysis revealed that the impact of transient breathing and body
vibrations on the reproduction of the thermal plume around the human body is
quite weak; consequently, these conditions can be ignored from the macroscopic
perspective of indoor airflow analysis.

Keywords
computational fluid dynamics, computer simulated person, human micromotion,
indoor environmental quality assessment, validation and verification

consequently, many experiments have used thermal manikins
and experimental subjects, allowing detailed and successful

Indoor environmental quality (IEQ) significantly affects the
quality of life (QOL), as people in contemporary societies tend
to spend most of their time indoors. In particular, the indoor
air quality and thermal environment are key factors that affect
human health, comfort, and productivity. For better design of
indoor environments, much attention has been devoted to the
methods for predicting their quality and its impact on humans;
these studies typically target the entire indoor space as well as
the local environment around the human body.

Several experimental studies targeting indoor environments
have been conducted up to date, yielding information that can
be used to improve their design. Here, humans constitute the
most important factor for designing indoor environments;

investigations of interactions between humans and indoor envi-
ronments in which they dwell. However, these studies have
suffered from many constraints (such as time, space, and cost
of experiments), as well as ethical restrictions associated with
subject-involving experiments.

In light of the above, various computer-simulated persons
(CSPs) for IEQ assessment have been developed recently,
which became possible owing to great strides in the computa-
tional sciences. Early on, relatively simple geometries, such as
cylinders and cuboids, were used for computational human
models. Xing et al. investigated the distribution of contami-
nants around a seated human, using experimental data and
computational fluid dynamics (CFD) analysis based on a
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thermal manikin and a four-cuboid CSP model." Brohus et al.
used three cuboid human models, for estimating the exposure
of humans to contaminants in ventilated indoor spaces.” In
addition to these cuboid models, many non-cuboid CSPs with
simplified human body geometry were developed and used for
estimating the flow, temperature, and contaminant distributions
around humans.*® While simple-geometry CSPs have been
favored owing to their smaller computational demands, Topp
et al. pointed out that more realistic geometries better predict
the airflow distribution around the human body.” They have
investigated the differences between the CFD results for
cuboid CSPs and realistic-geometry CSPs; while there was lit-
tle or no impact on the global indoor climate, a noticeable
effect was observed in the CSP proximity. These results sug-
gest the need for the development of realistic-geometry CSPs,
for more accurate numerical analysis of human-centered health
risks and thermal comfort. This has motivated the development
of various realistic-geometry CSPs.*'?

For establishing a comprehensive IEQ predictive model
using realistic “digital twins” of humans, it is necessary to
reproduce not only the detailed shape of the human body but
also the fundamental physiological functions of the human
body that potentially affect the indoor climate. A typical exam-
ple is the heat generation owing to the thermoregulation of the
human body. The human body is a significant source of heat,
owing to its metabolic activity that maintains the body temper-
ature in the physiological range. The humans’ thermal environ-
ment significantly affects their heat loss and thermal comfort
in indoor spaces; in turn, human thermoregulation affects the
indoor thermal environment. Capturing this interaction between
humans and their indoor environments is key to CSP-based
human microclimate analysis. The most visible impact of the
human heat generation in indoor spaces is a convective updraft
around the human body, which creates a complex flow pattern
in the surrounding indoor space and thus may affect the trans-
port of contaminants, increasing human health risks. In addi-
tion, a recent study, using CSP-based numerical analysis,
suggested that the contaminant inhalation probability can be
affected by human-generated thermal plumes.'® In view of the
above, methods that enable high-accuracy predictions of ther-
mal plumes around humans are necessary for precise estima-
tion of IEQ.

At the same time, indoor air quality can significantly affect
human health and comfort, because air is vital to humans.
Many previous studies have investigated inhalation-related
health risks, using numerical analysis techniques and computa-
tional model'n% of the human respiratory tract and the breath-
ing process.'* Moreover, many studies have focused on the
integrated analysis (combining indoor spaces and the respira-
tory tract) and its application to indoor environmental
design.'>*"** A comprehensive prediction method accounting
for the local indoor climate, microclimate around the human
body, and contaminant transfer in the respiratory zone under
continuous breathing, is needed for elucidating the indoor con-
taminant transfer mechanisms and associated human health
risks owing to respiratory exposure and airborne infections.

Another key function of the human body that is correlated
with indoor climate and human health is body movement. The
human body is not stationary, and various movements associ-
ated with daily activities are essential for maintaining routine
life. In addition to these active movements of the human body,
there is an ever-present micromotion resulting from a postural
control scheme to maintain the stability and orientation of the
human body with humans in upright standing/sitting positions.

wileyonlinelibrary.com/journal/jar3

This can be seen as postural sway owing to the torque varia-
tion at the ankles, knees, and hip joints, exercised by neural
control pathways. It is widely known that the 1)postural sway
angle is age- and health condition-dependent;*> at the same
time, certain-intensity postural sway may influence the micro-
climate around the human body and convective heat loss from
the skin. However, none of the previous studies have focused
on this aspect, while some have investigated the impact of
walking on the microclimate around the human body and con-
taminant transfer characteristics in indoor spaces.>®!*?3%
Reproducing regular micromotion of the human body in the
IEQ assessment using a realistic body geometry would be
more generalizable than the ability to reproduce specific move-
ments of the human body, allowing to discuss in detail the
environmental effects of micromotion under static conditions.

This study introduces an originally developed CSP that uses
a realistic human body geometry, including the respiratory
tract components from the nasal/oral cavity to the bronchial
tubes. Benchmark grid tests of the CSP were performed to
establish a method for predicting the local/global climate
around the human body and in the respiratory tract in the CFD
framework. The feasibility of the human microclimate analysis
capturing thermal plumes, breathing patterns, and human
micromotion was examined, and the reproducibility of in vivo
particle deposition experiments in the respiratory tract is dis-
cussed to provide useful information on the quality control of
indoor CFD-based CSP simulations.

2. Verification and Validation of the CSP

To accurately evaluate the IEQ and environmental interactions
between humans and indoor climates using CSPs, it is essential
to precisely reproduce a complex flow field around a detailed
human body geometry, including the thermal plume owing to
the human heat generation. This paper introduces a verification
and validation process targeting the global/local airflow distri-
bution around the human body, which is the dominant factor
in human-centered heat and contaminant transfer.

2.1 Outline of the CSP

This study used the CSP that was originally developed in our
previous studies.”®?® There are six types of CSPs: adult male,
adult female, and child models in standing and seated postures.
The CSP of an adult male model in the standing posture was
used for examining the prediction accuracy of the method in
this study. A sophisticated human body geometry was repro-
duced based on the representative human body scale of Japa-
nese males, and the complex geometry of the fingers and toes
was simplified to reduce the calculation load.

Figure 1 shows the geometry and grid design of the CSP
that was used in this study. The surface meshes were arranged
using 56 000 polygonal meshes (size range, 0.5 to
345.5 mm?). Considering the health risk and thermal comfort
assessment based on the human microclimate analysis, it is
highly important to accurately predict the heat/contaminant
behavior on the CSP surface. To accurately predict the flow
profile in the viscous sublayer based on the wall function of
the turbulence model, 10 layers of boundary meshes were cre-
ated near the CSP surface. The height of the first cell was
0.2 mm; as a result, the non-dimensional distance from the
CSP surface (y+) was confirmed based on Equation (1) to be
below 1.0, over the entire CSP surface and for the airflow
approaching at 1.0 m/s. Here, y; is the normal distance
between the first cell centroid and the CSP surface, and v is
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FIGURE 1.

the air kinematic viscosity. u* denotes the friction velocity,
and is given by Equation (2). p and 7,, represent the air density
and surface shear stress, respectively.

yh=uty, /v, 1

u = \/7,/p. 2

To verify the indoor climate analysis using the CSP, grid
independence tests were performed using various grid designs.
By examining the discrepancies between the results obtained
using the different grid designs, and focusing on the scalar
velocity distribution around the CSP, the optimal grid was
determined. Finally, a benchmark test for validating the CSP
analysis was performed using the measured data of global/local
velocity and temperature obtained from an environmental
chamber experiment that used a thermal manikin.

2.2 Grid independence tests of the CSP

In this study, six different grid designs were considered for
examining the precision of calculations in the CSP proximity.
Across these grid designs, the grid resolution parameter, R*
[—], varied from 4 to 28.>° The grid resolution was determined
by Equation (3), using a representative cell size, max(dx,5y,0z)
[m], and the characteristic length of the domain, L [m], defined
by the domain volume V [m?] and domain total surface area A

“5)0 0.59mil.
R*=4
FIGURE 2.
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Surface meshes on the CSP and 10 layers of boundary cells near the CSP surface

[m?]. Figure 2 shows the representative grid designs used in
the grid independence tests. The tests estimated the calculation
error of the flow-field analysis in the CSP proximity, which
fundamentally affects the heat and mass transfer analysis;
therefore, variations in the grid designs with various grid den-
sities in the CSP proximity were considered. Identical designs
for the surface meshes and boundary layer meshes on the CSP
were used in each of the grid designs.

L
| — 3
max(6x, 8y, 67)
=" 4
A

A simple model room was created for the grid independence
tests, as shown in Figure 3A, and the CSP was positioned at
the center of the model room. Flow-field analysis using the
shear-stress transport (SST) k-w turbulence model®! was con-
ducted, assuming uniform airflow (0.1 m/s) from the anterior
to posterior region. To reproduce a complex flow pattern with
a thermal plume around the human body, the CSP surface tem-
perature and ambient airflow temperature were set to 33.55°C
and 24.85°C, respectively. For quality control of the CFD anal-
ysis using the CSP, analytical methods suggested in previous
studies were carefully considered.”>° The second-order

 R*=12

Grid designs in the CSP proximity, with the representative grid resolution R* varying from 4 to 16



YOO anp ITO
A
Inflow boundary Outflow boundary
(Velocity inlet) (Outflow)
FIGURE 3.

R*=8 R*=12

wileyonlinelibrary.com/journal/jar3

°
° °
0% ©° 0° o
° ° ° ° °
° 00 ¢,° ©
(X ©0 °
0 %00 g %0
) () (X ©
° ° © ° °
° 00°¢© °
00°% 00, 0
© © 1)
© © o0 ©
° [ ° ©°
3 °, ° °
©0 Coo®
L ° o
e % o ° °
© ©°
°° o®
o ® o A
© °
ov ©
LS ° o
PIA) o G o©
[
o0 O
o © of%P0°% o
° © [ ° °
° AN [
() loo®
© L 5.0
° [ ) °
© © © 0.0
° A
o o ©

(A) A simple model room with the CSP and (B) the spatial loci of the data points sampled for the error analysis
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FIGURE 4. Scalar velocity distributions around the CSP

upwind scheme was used for the convection term, and the
SIMPLE algorithm was used.

For the calculation error analysis, scalar velocity values were
sampled from equally spaced 200 points (distance, 0.3 m) in
the CSP-centered cuboid region, as shown in Figure 3B. In this
study, the data obtained for the densest grid design of R* = 28
were considered as reference data, and the coefficient of varia-
tion of the root mean square error (CV(RMSE)) and coefficient
of determination (R?) were estimated for each grid design.

The analysis results of the scalar velocity distribution around
the CSP are shown in Figure 4, for the representative grid res-
olutions of R* = 8, 12, 20, and 28. All of the considered grid
designs clearly yielded non-uniform and complex distributions
around the realistic-geometry CSP, and no significant differ-
ences between the velocity scale and flow patterns of thermal
plumes were observed across the different grid resolutions,
while small discrepancies between flow patterns were observed
in some local domains.

The analysis results of CV(RMSE) and R? for the different
grid designs are summarized in Table 1. In this study, a grid
design was considered optimal if its associated CV(RMSE)

0.5 [m/s]

TABLE 1. Results of the error analysis, for the different considered
grid resolutions

Grid CHTC

resolution Grid Volume-average  on CSP

R* number Velocity [m/s]  [W/m? K] CV(RMSE) R?
28 7938 170 0.1070 3.68 — —
24 5320 567 0.1064 3.68 3.64% 0.98
20 3443 538 0.1064 3.69 15.08% 0.71
16 2191801 0.1063 3.71 15.28% 0.70
12 1429 864 0.1067 3.68 9.52% 0.88
8 1040 619 0.1068 3.65 1.77% 0.82
4 581 950 0.1130 3.62 19.08% 0.53

was at or below 10% and if its associated R? was at or above
0.85; these cutoffs followed Guideline 14 of the American
Society of Heatin§, Refrigerating, and Air-conditioning Engi-
neers (ASHRAE).* The grid design with R* = 12 (the finest
grid) exhibited satisfactory results; consequently, it was
adopted for the validation tests of the indoor climate analysis
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FIGURE 5. Analytical domain for the CSP benchmarking

using the CSP in the present study. The volume-average veloc-
ity in the entire domain and the convective heat transfer coeffi-
cient on the CSP surface were also calculated for each case,
and there were no significant differences between the results
obtained for the different grid designs.

2.3 Validation of the flow-field analysis in the CSP proximity
Nielsen et al. reported velocity measurements in an environ-
mental chamber with a thermal manikin.'' To examine the pre-
diction accuracy of the flow pattern in the CSP proximity,
benchmarking was performed based on the experimental condi-
tions in the thermal manikin experiment. Figure 5 schemati-
cally shows the analytical domain and boundary conditions for
the CSP benchmarking. In a model room (dimensions,
3.5 X 3.0 X 2.5 m) the CSP was located at the center, and the
boundary conditions for reproducing displacement ventilation
were considered. The inflow velocity and temperature were
0.182 m/s and 21.8°C, respectively. The heat generation was
identical to that used in the thermal manikin experiment
(76 W, convection + radiation), and was applied to the CSP to
reproduce the thermal plume around it.

Figure 6 shows the flow-field analysis results for the CSP.
Nonuniform and complex flow patterns around the CSP were
confirmed, with a clear thermal plume atop the CSP. To

YOO anp ITO

compare the CFD analysis results with the experimental ones,
the scalar velocity field was sampled at the same location as
the one for which data were sampled in the thermal manikin
experiment (line L1-L5), as shown in Figure 6.

Figure 7 summarizes the experimental and CFD analysis-
based velocity profiles for lines L1, L2, L4, and L5, revealing
good concordance between the two. To investigate the repro-
ducibility of the thermal plume around the human body, the
CFD analysis results were compared to the results of particle
image velocimetry (PIV) measurements for line L3 (Figure 8).
Considering the small geometrical differences between the
thermal manikin and the presently used CSP, multiple exami-
nations were performed by sampling from additional points
along the anterior—posterior axis from L3 (z = 1.75 m). The
CFD analysis-based and experimental velocity profiles were
very similar. This benchmarking focused on the prediction
accuracy of the flow field, which predominantly determines the
heat and contaminant transfer in indoor spaces. The above
results suggest that sufficient prediction accuracy of global/lo-
cal climate analysis around the human body can be secured
based on the methodology for indoor CFD analysis using the
CSP introduced in this study.

3. Reproduction of Human Physiological Functions Using
the CSP

3.1 Breathing

Gupta et al. characterized the flow dynamics of breathing and
temporal variations in the breathing flow rate.*' The variation
in the breathing flow rate (Q,.,) can be expressed using the
unsteady breathing cycle model defined by Equation (5):

Qrex =a Sil’l(ﬂt) 5

where a and f are the peak flow rate [L/s] and breathing fre-
quency [min~'], which depend on the height, weight, and body
surface area of the human body, respectively. In this study,
unsteady breathing with a minute volume (MV) of 12.3 L/min
was reproduced assuming a standing CSP. As a result, the maxi-
mal inhalation and exhalation flow rates reached 0.69 and
0.61 L/s, respectively, as shown at points (a) and (c) in Figure 9.
The duration of a single breathing cycle was 4.05 s, with 1.9 and
2.15 s taken up by inhalation and exhalation, respectively.

L1
0.5
[m/s]
=
0
FIGURE 6. Scalar velocity field around the CSP and location of the sampled point
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FIGURE 8. Experimental and CFD analysis-based velocity profiles for
line L3

To incorporate the breathing function into the CSP based on
an unsteady breathing cycle, nasal breathing was assumed in
this study. The variation in the breathing flow rate was used as
a boundary condition for the nostril surfaces of the CSP, and
calculations for unsteady breathing were conducted using suffi-
ciently small time-steps, to satisfy the Courant—Friedrichs—
Lewy (CFL) condition. This study focused on the impact of
unsteady breathing on (1) the airflow characteristics in the
breathing zone and (2) development of human-generated ther-
mal plumes. The flow field analysis results for the CSP prox-
imity, with and without the reproduction of unsteady
breathing, are summarized in Figure 10. When the CSP had no

wileyonlinelibrary.com/journal/jar3

25

2.0

0.5

00_:3:

0.0 .
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Experimental and CFD analysis-based velocity profiles for lines L1, L2, L4, and L5

breathing function incorporated, the airflow around the CSP
owing to the complex human body geometry was only slightly
non-uniform. When the CSP was in the maximal-inhalation
mode (point (a) in Figure 9), high velocity was observed only
in the vicinity of the CSP nostrils. Whereas no intense airflow
was observed in the breathing zone when the CSP transitioned
from inhalation to exhalation (point (b) in Figure 9), an exha-
lation jet was clearly formed at the maximal-exhalation point
(point (c) in Figure 9), and gradually diffused over time. The
exhalation jet affected the flow pattern in the region extending
to approximately 0.25 m (along the horizontal axis) and
0.45 m (along the vertical axis) away from the CSP nostrils.
These results revealed that the reproduction of unsteady
breathing in the CSP analysis crucially affected the flow pat-
tern in the breathing zone, and the CSP with unsteady breath-
ing could be used for precise prediction of contaminant
behavior in the breathing zone and for predicting the concen-
tration levels of contaminant inhalation and respiratory expo-
sure.

To investigate the impact of unsteady breathing on the
development of human-generated thermal plumes, the velocity
profiles for line L3 in Figure 6 during one breathing cycle
were obtained and summarized in Figure 11. No significant
differences between the velocity profiles during unsteady
breathing were observed, indicating that the breathing jet did
not strongly affect the global/local microclimate around the
human body, except in the breathing zone.

This study assumed that a nasal breathing condition with a
low breathing flow rate corresponds to a low metabolic rate
during quiet standing as a general condition. Oronasal breath-
ing, with higher breathing flow rates associated with heavy
physical activity, may affect the flow characteristics around the
human body; this will be addressed in future studies.

3.2 Human micromotion in the standing posture
Because two-thirds of the human body mass are concentrated
in the two-thirds of the body height, the human body is inher-
ently an unstable system.**> Micromotion owing to the posture
control of the human body is always present, although it is age
and health dependent.”** This study focused on the micromo-
tion of the human body, and the impact on the microclimate
around the human body was quantitatively analyzed.

In this study, an inverted pendulum model (IPM) was
applied to the CSP, to investigate the impact of human micro-
motion on the microclimate around the human body.

Jpn Archit Rev | 2022 | 6
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FIGURE 9.
breathing

Variations in the breathing flow rate during unsteady

Multisegment IPMs have been widely used for investigating
the balance control of the human body. However, it was
argued that a single-segment IPM, a simplified model that con-
siders the pivot at the ankle only, also accurately predicts the
sway motion of the human body.*® In this study, a single-
segment IPM was used for defining the sway angular velocity
and sway frequency of the CSP during quiet standing. The
single-segment IPM that was used in this study is schemati-
cally shown in Figure 12. Owing to the neuromuscular control
for maintaining an upright posture, the human body sways in
the anteroposterior (AP) and (b) mediolateral (ML) directions.
Many previous studies have investigated the nature of the
human postural sway, using the measured center of pressure
(COP) and center of mass (COM) of the human body.23’4749
The relationship between COP, COM, COP minus COM, and
the behavior of the postural sway of the human body has been
studied.***" Based on this information, maximal angular
velocity (@,,4,) in the 3.0-5.0°/s range was assumed in this
study, to investigate the effect of the general sway intensity
(assuming young and healthy adults) on the human microcli-
mate. As the fluctuation of COP, COM and COP minus COM
in measured data corresponds to the postural sway frequency,
we set 1.0 Hz for the AP direction and 0.5 Hz for the ML
direction, based on the previously reported values.>™> The
angular velocity and sway frequency of the human body were
simplified assuming a sine function, as shown in Figure 13A.
As a result, the head displacements indicated in Figure 12 for

t=0.95s

Without breathing

FIGURE 10.

Jpn Archit Rev | 2022 | 7

t=1.9s

YOO anp ITO
Height [mm]
140.0 === Without breathing
—— t=0.95 s (Inhalation)
—_— t=19s
120.0 —— t=3.0 s (Exhalation)
100.0
80.0
60.0
40.0
20.0
0.0
0.00 0.20 0.25
Velocity [m/s]
FIGURE 11. Velocity profiles for line L3, during unsteady breathing

WOpax = 3.0, 4.0, and 5.0 °/s were approximately 14.5, 19.3,
and 24.1 mm, as summarized in Figure 13B; these values are
typical for young and healthy adults.”®

A simple model room and the CSP shown in Figure 3 were
used to investigate the reproducibility of the human micromo-
tion effects in a human microclimate. Micromotion, as defined
in Figure 13A, was applied to the CSP using a dynamic mesh
in ANSYS Fluent 2021R2.>7 In this study, the convective heat
transfer coefficient over the entire CSP surface was estimated
for static and swaying conditions. The fixed surface tempera-
ture of the CSP was 33.55°C, with the environment tempera-
ture (inflow temperature) at 24.85°C. A uniform inflow from
the anterior to posterior region was used (speed, 0.1 m/s),
assuming a gentle airflow distribution in a general indoor envi-
ronment.

As a numerical technique for reproducing the temporal
dynamics of the human postural sway, a dynamic mesh with a
smoothing method was applied to the analytical grids around
the CSP, to respond to the angular translation of the CSP

Scalar velocity distribution patterns in the breathing zone, during unsteady breathing
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without remeshing. However, 10 layers of boundary meshes on
the CSP were maintained, for analyzing the numerical error
owing to the boundary mesh variations. The SIMPLE algo-
rithm was used for the pressure—velocity coupling. The SST
k—w model was used for turbulence calculations, and a second-
order upwind scheme was used for the convection term. To
ensure the stability and convergence of calculations, the time-
step was set to a sufficiently small value of 0.005 s.

Figure 14 shows some representative results of the analysis of
the scalar velocity distribution around the CSP, with and without
the postural sway, for w,,,, = 4.0 °/s and r = 90.0 s. The global
flow field in the indoor space and the thermal plume around the
CSP are not critically affected by the human micromotion. In
contrast, a discrepancy between the velocity distributions near
the CSP surface is clearly observed, for both the AP and ML
directions. However, Figure 14 shows a snapshot at ¢ = 90.0 s,
and does not inform about the steady-state distribution.

To quantitatively investigate the impact of micromotion on
the CSP, the time-averaged convective heat transfer coefficient
on the CSP surface was calculated using parametric analyses,
for various values of the maximal angular velocity (@, =

3.0, 4.0, and 5.0), and the results are summarized in Fig-
ure 15. With postural sway, the convective heat transfer coeffi-
cient on the CSP surface increased by 0.09, 0.27, and 1.7% for
Wpax = 3.0, 4.0, and 5.0°/s, respectively. Although higher con-
vective heat transfer coefficients were observed for higher
maximal angular velocities, these results imply that the impact

of micromotion on the convective heat and mass transfer of

wileyonlinelibrary.com/journal/jar3

Schematic of the single-segment IPM and human postural sways in (A) the anterior-posterior (AP) and (B) medial-lateral (ML) direc-

the CSP is negligible. Young and healthy adults were assumed
in this parametric analysis that sought to determine the impact
of the maximal angular velocity, with more intense postural
sway corresponding to less stable quiet standing. Thus, elderly
people or humans with balance disorders may stronger affect
both human microclimate and convective heat/mass transfer of

the human body.

4. Validation and Verification of the Respiratory Tract

Model
By performing contaminant transfer analysis for indoor spaces
and the respiratory tract, specific health risks owing to the
inhalation of contaminants can be estimated. This study used a
numerical respiratory tract model that was originally developed
in our previous studies; using the model, we sought to validate
the flow/contaminant transfer analysis in the human respiratory
tract model.”®>? In this study, the grid independence of the
respiratory tract model was carefully checked, and the analysis
results for the airflow and deposition of particles obtained
using the optimal grid design were validated against available

experimental data.

4.1 Outline of the respiratory tract model

A computational human respiratory tract model was originally
developed in our previous studies based on computed tomogra-
phy (CT) data obtained from a non-smoking and healthy Asian
male. As shown in Figure 16A, the detailed geometries, from

Jpn Archit Rev | 2022 | 8
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FIGURE 13. (A) Angular velocity of the CSP in the AP and ML direc-

tions, vs. time, for wmax = 4.0 °/s and (B) head displacement at each
time step (At = 0.005 s), for three different maximal angular velocities

the nasal/oral cavity to the fourth bifurcation of the bronchial
tubes, were extracted. The height and volume of the respira-
tory tract model were approximately 34.8 cm and 173 cm?,
respectively. Figure 16B shows the representative grid design

A

0.5
[m/s]

IO

FIGURE 14.
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FIGURE 15. Time-averaged convective heat transfer coefficient on

the CSP surface, for w,ax = 3.0, 4.0, and 5.0°/s

of the numerical respiratory tract model (7.5 million tetrahe-
dral cells).

4.2 Grid independence test on the respiratory tract model

To check the grid independence of the numerical respiratory
tract model based on the flow field analysis, this study focused
on the flow pattern in the trachea region, which exhibits a
well-developed flow compared with other regions. The scalar
velocity profiles in the A-A’ section in Figure 16A were
obtained from the flow field analysis using four different grid
designs: 1.0 million, 4.6 million, 7.5 million, and 10.6 million
tetrahedral cells. For the flow field analysis, the inhalation air-
flow rate was 7.5 L/min, and the second-order upwind scheme
for the convection term and the SIMPLE algorithm were used.
Figure 17 summarizes the mean scalar velocity profile for the
A-A’ section, calculated using the four different grid designs.
Considering the peak velocity and overall distribution of the
velocity in this section, the grid design with 7.5 million tetra-
hedral cells was found to be the optimal one; consequently,
this grid design was used for benchmarking.

4.3 Validation of the flow field analysis in the respiratory tract
model

To examine the prediction accuracy and reproducibility of the
flow pattern in the respiratory tract, a three-dimensional replica

Scalar velocity distributions near the CSP (A) with and (B) without postural sway, for wmyax = 4.0°/s and t = 90.0 s
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FIGURE 16.
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FIGURE 17. Scalar velocity profile, for the A-A" section

model was designed, based on the geometrical data of the res-
piratory tract model, and detailed information on the velocity
distribution in the respiratory tract was obtained from PIV
data. Figure 18 shows the experimental setup for PIV measure-
ments. The flow pattern in the trachea region was measured
assuming the Reynolds number of approximately 500, which
corresponds to the breathing airflow rate of 7.5 L/min.

It is essential to clarify the impact of a specific turbulence
model on the prediction accuracy of the flow distribution, con-
sidering the turbulent flow caused by the complex geometrical
structure of the respiratory tract. For CFD simulations of the
respiratory tract, two turbulence models were used: (1) a low-
Reynolds-number k—e model and (2) an SST k-w model.*!¢0-6!
A grid design of 7.5 million cells was used, and the cells near-
est to the surface were assumed to be in a viscous sublayer, by
arranging sufficiently small cells near the surface. As a result,
the dimensionless distance to the surface (y+) was below 1.0
over the entire surface in the respiratory tract model.

The normalized velocity profiles for section B-B’ obtained
by numerical analysis and from experimental data are summa-
rized in Figure 19. Good consistency was confirmed between

Outline of the geometrical data and the representative grid design of the respiratory tract model

the results of the PIV experiment and CFD analysis performed
using the methodology in this study; the calculation results
using the SST k—w model better agreed with the experimental
results.

4.4 Validation of the particle deposition analysis in the
respiratory tract model

The main objective of the respiratory tract’s microclimate
analysis was to quantitatively and qualitatively predict indoor
health risks through a respiratory exposure assessment. To use
the numerical respiratory tract model for assessing health risks,
it is important to confirm the prediction accuracy of the inhala-
tion risk assessment of indoor contaminants. In this work, we
simulated particulate contaminant inhalation using the respira-
tory tract model, and compared the results with previously
reported in vivo measurements.

Discrete-phase particle transport analysis was conducted
using the Euler-Lagrange method, assuming the inhalation of
spherical particles. Flow field analysis of the respiratory tract
was conducted based on the methodology established in this
study, and overall 10 000 particles were injected through the
CSP nostrils. The particles” density was p, = 1000 [kg/m?], in
accordance with the definition of the particles’ aerodynamic
diameter. The escape and trap boundary conditions for treating
the particles were applied to the inlet/outlet and wall surfaces
in the respiratory tract model, respectively. The total deposi-
tion fraction () in the respiratory tract was calculated using
Equation (6), with Cyp indicating the total number of particles
deposited on the entire surface of the respiratory tract, and Cj,
denoting the total number of inhaled particles.

c
n=—2L 5 100%. 6

in

The inertial parameter (IP) was used to discuss the deposition
of micron-sized particles in the respiratory tract.°> IP is defined
by Equation (7), considering the particles’ aerodynamic diame-
ter (d,) and inhalation airflow rate (Q;,).

IP=d, - Q. 7

The value of d, was varied in the 1-10 pm range, while the
value of Q;, was varied in the 7.5-60 L/min range, to study

Jpn Archit Rev | 2022 | 10
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the dependence of the deposition behavior on the particles’
diameter and flow characteristics. The analysis results were
compared with the previously published results of in vivo mea-
surements.®>*

Figure 20 compares the deposition fraction obtained in the pre-
sent study with previously reported values. Both the previously
reported and the currently estimated data exhibit sigmoidal-like
trends. The numerical analysis results obtained using the methods
in the present study were largely concordant with previously
published experimental data, with a small discrepancy owing to
anatomical differences between the respiratory tracts used in the
different studies, which is not accounted for by the IP.

5. Limitations of this Study

Modeling the morphology of the human body and the physio-
logical/psychological mechanisms associated with heating,

Jpn Archit Rev | 2022 | 11

Normalized velocity profiles for section B-B’, obtained from PIV experiments and CFD analyses

ventilation, and air conditioning changes has been an important
research topic. Over the past few decades, CSPs have been
introduced into the CFD analysis of indoor airflows. An impor-
tant objective of a CSP in a CFD framework is to enable the
analysis of the skin surface temperature distribution by analyz-
ing the local convective and radiative heat flux on the skin sur-
face in the context of a specific indoor environment.
Therefore, it is important to model clothing in terms of heat
and mass transfer resistance, for accurate estimations of the
skin surface temperature distribution. The ventilation in the air
layer formed between the human body and clothing and the
heat and mass transfer therein have complex geometries. To
address this issue, an idealistic modeling approach that concen-
trates the resistance on the surface layer, or a realistic model-
ing approach that creates an exhaustive clothing model that
directly reproduces the airflow, heat, and mass transfer in the
clothing air layer, have been proposed. We note that clothing
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FIGURE 20. Comparison of the numerically estimated particle deposi-
tion fraction (using the numerical respiratory tract model in the pre-
sent study) and previously reported in vivo measurement results

modeling is beyond the scope of the present report, but should
be addressed in future studies.

In terms of the skin surface temperature control, the devel-
opment of a thermoregulation model for the human body is
also an important issue. Various types of thermoregulation
models, such as the Fiala, Stolwijk, JOS, and Smith models,
have been proposed for integration with CFD analysis. The
choice of the thermo-regulation model is expected to signifi-
cantly affect the results of the analysis of the metabolic heat
generation by the human body and the air temperature distribu-
tion around the human body.

For successful predictions of airborne transmission in indoor
environments, the transport of droplets and droplet nuclei (gen-
erated by infected individuals) to the breathing zone of suscep-
tible indoor residents must be precisely analyzed. The flow
field around the breathing zone may be significantly influenced
by transient breathing cycles, coughing, and sneezing. These
can be categorized as unsteady jets generated by the nostrils or
mouth, and require accurate modeling in terms of predicting
the flow field around the human body. This study discussed
the impact of transient breathing on the flow patterns in the
breathing zone.

Although we omitted the discussion of thermo-regulation
modeling and cough and sneezing modeling in this study, it
will be a very important issue in terms of the CFD analysis of
indoor environments using CSPs.

6. Conclusion

This study introduced a CSP with a numerical respiratory
tract model established for a detailed IEQ assessment based
on the CFD analysis. To provide useful information for the
quality control of the IEQ assessment using the CSP, this
study validated the prediction accuracy of indoor global/local
climate analysis using the CSP, by performing sophisticated

wileyonlinelibrary.com/journal/jar3

grid independence and benchmarking tests. As a result, satis-
factory concordance was confirmed between the results of the
indoor flow field analysis using a CSP with a grid design of
R* =12 and the SST k-w turbulence model. Based on the
methodology of the CSP analysis established in this study,
the impact of unsteady breathing and human micromotion
during quiet standing on the microclimate around the human
body was also investigated, and the negligible impact of
breathing and postural sway on the human thermal plume
was confirmed.

In addition, verification and validation of the flow and
contaminant transfer analysis in the respiratory tract were
conducted. As a result, the flow field analysis using the grid
with 7.5 million tetrahedral cells and the SST k-w turbulence
model exhibited good reproducibility of the experimental
results. This study also examined the prediction accuracy of
particle transport and deposition analysis in the respiratory
tract, for applying the respiratory tract model to the inhala-
tion risk analysis with IAQ problems, and good concordance
between the numerical analysis results and in vivo experi-
mental data was observed. Although there is potential for
improving the benchmarking test results of the CSP, this
study confirmed sufficient reproducibility. The CSP analysis
methods discussed in this study are likely to be useful for
advanced IEQ assessments and sophisticated indoor environ-
mental designs.
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