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Abstract An investigation of the performance of the two-equation turbulent k- model has been
conducted for recirculating flows in ventilated spaces. In conjunction with either the wall-function method
or an extended-to-wall method, the original k-w model of Wilcox was compared with the standard and
low-Reynolds-number k-¢ models. It was found that the original k-0 model predicts a longer
reattachment length for the flow over a backward-facing step with a large expansion ratio to which the
mixing room ventilation is relevant. In order to enhance the accuracy in predicting ventilation flows,
some modifications to the original k-» model were proposed. A turbulent cross-diffusion term was added
to the w-equation in analogy to its molecular counterpart. Several model coefficients were re-evaluated
in an attempt to find the optimum choice. The behavior of both the original and modified k-w models was
analyzed, and the computational efforts with different models to achieve a converged solution were
compared. The modified model is shown to be more robust in convergence.

In comparison with both experimental data and predictions by other models, the results calculated
by the modified model are quite encouraging. It is shown that this model can be an alternative to the
conventional k-¢e model for calculating complex ventilation flows. With the extended-to-wall method, the
k-w model integrates the solution directly to the wall surface without using any damping functions, and
the prediction accuracy for mean flow profiles is generally similar to that with the Lam-Bremhorst low-
Reynolds-number (LRN) k-e¢ model. Without suffering the uncertainty from specifying € at the wall
surface, the k-w model uses an exact asymptotic solution as the boundary condition of w when using the
extended-to-wall method. The solution procedure usually is more stable than using an LRN k-g¢ model.

Nomenclature

¢, ¢, model constants y-directions respectively

E constant in eq. (29) w step height of backward-facing

h height of inlet step configuration

H height of computational X; coordinate directions (x, y)
domain X, reattachment length of

k turbulent kinetic energy backward-facing step flow

I, turbulence intensity at inlet y* dimensionless distance from

k. turbulent kinetic energy at wall surface, u_ y/v
inlet

L, turbulent length scale at inlet Greek symbols

p pressure a, a* model constants

Re inlet-based Reynolds number B, B* model constants

T height of outlet 9, Kroneker delta

t time € dissipation rate of k

U, u;, velocity at inlet €, dissipation rate of k at inlet

u; velocity components in K von Karmén constant
Cartesian coordinates Y coefficient in eq. (20)

u, friction velocity u molecular viscosity

u', v' fluctuating velocities in x- and My turbulent eddy viscosity




v kinematic molecular viscosity T turbulence time scale

v, kinematic turbulent viscosity ® specific dissipation rate of k
P density of air W, specific dissipation rate of k at
O, 0, model constants inlet

1 Introduction

v

Recirculating flow phenomena exist in most ventilated spaces where an efficient mixture
with supplied fresh air is required to dilute the contaminants. With a mixing ventilation
system, for example, fresh air is ejected into the room through an inlet under the ceiling
to produce an overall recirculation which greatly affects the indoor air quality, thermal
comfort and energy consumption. Recirculation is also a powerful generator of
turbulence and hence mixing and losses. This flow phenomenon, therefore, has been the
subject of many studies, particularly for benchmarking the performance of turbulence
models, e.g. in [1] and [2].

The standard high-Reynolds-number k-&¢ model is reasonably well-behaved in
conjunction with either wall functions or low-Reynolds-number corrections, and has been
widely used for solving a variety of ventilation problems. Nevertheless, the k-¢ model
has some limitations when used for simulating indoor air flows and heat transfer, as
documented by Chen and Jiang [3]. In addition, local laminar regions usually exist in
a ventilated space, not only in the near-wall region but also in areas far from the wall
surface. For example, in the flow field created with a displacement ventilation system
where the fresh air is supplied at a small velocity and with a lower temperature than the
ambient air, an upwards plume-like air flow with some laminar characteristics is
triggered in the lower zone of the ventilated space owing to the influence of buoyancy.
Davidson [4] showed that a low-Reynolds-number k-&¢ model usually renders this flow
a pure and practically untrue laminar solution. The k-w model, by contrast, is expected
to be able to reasonably capture the characteristics of this type of flow because the w-
equation possesses a solution as the turbulent kinetic energy approaches zero. To
accurately simulate complex ventilation flows, investigating the performance of various
turbulence models therefore becomes increasingly important.

Over the past two decades, several alternative two-equation turbulence models
have been developed, including the k-kI model by Rotta [5], the k-kt model by Zeierman
and Wolfshtein [6] and the k-t model by Speziale et al [7]. Most notably, a significant
development has been made on the two-equation k- model and/or its variants [8]-[12].
A standard k-0 model, which is well-developed for engineering applications, has been
proposed by Wilcox [11]. This model is capable of yielding more accurate results than
other two-equation models for predicting adverse pressure gradient flows and separate
flows, as reported by Wilcox [11] and Menter [13]. Liu and Zheng [14] applied this
model to solving cascade flows, and obtained predictions in good agreement with
experimental data. Patel and Yoon [15] used it for separated flows over rough surfaces,
and the results were shown to be remarkably accurate compared to those by k-g¢ models.
More recently, a low-Reynolds-number k-w model has been proposed by Wilcox [12]
for simulating transitional incompressible flat-plate boundary layer flows, realistic
descriptions on the transitional regions were reported. The advantages of the k-w model
have emerged mainly in aerodynamic applications. For predicting recirculating
ventilation flows, however, the performance of this model remains unclear.

Unlike with the standard k-¢ model, the solution of Wilcox's standard k-w
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model can be integrated directly to near-wall regions without using the wall functions
as a bridge, ie. with the extended-to-wall method. In contrast to the uncertain }
determination of € on a wall surface when using LRN k-¢ models, the wall boundary
condition of w is replaced with its exact asymptotic solution in the immediate wall
proximity. With the extended-to-wall method, a refined grid must be employed to
resolve near-wall behaviors of turbulence. To avoid a high computer power requirement,
on the other hand, the standard k- model can also be used in conjunction with the wall-
function method in engineering applications.

This paper implements the k- model to simulate recirculating ventilation flows,
and investigates the model's performance. It was found that Wilcox's original k-w model
overpredicts the reattachment length for a backward-facing step flow with a large
expansion ratio. Modifications to this model are proposed to enhance its prediction
accuracy. The physical arguments with the modification are described. A turbulent Cross-
diffusion term is added to the w-transport equation, and the closure constants are re-
evaluated by a straightforward argument within the context of two-equation turbulence
models. In conjunction with either the wall-function method or the extended-to-wall
method, calculations were performed for two typical flows relevant to room ventilation,
including a separated flow over a backward-facing step with a large expansion ratio and
a recirculating flow in a two-dimensional confined enclosure. Comparisons were made
between predictions and experiments, and between predictions with various two-equation
turbulence models. The behavior of the k-w model was analyzed. The computational
effort to achieve a converged solution with various models was discussed based on the
calculation of the recirculating flow in the confined enclosure.

2 Model Formulation

This section describes the mathematical formulation of the k- model, including the
governing equations, the physical arguments for the modification, and the boundary
conditions.

2.1 Governing Equations
By using Boussinesq's hypothesis, the governing equations of Wilcox's original k-
model [11] for steady-state turbulent flow are as follows.

For continuity,
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For specific dissipation rate of k,
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The production of kinetic energy, P, , for incompressible flows is expressed by
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The eddy viscosity, 4, is defined in terms of the turbulent kinetic energy k and the
specific dissipation rate w :

)
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In Wilcox's model, the closure constants are determined as a* = 1.0, * = 0.09, a =
0.56, B = 0.075 and o, = o, = 2.0.

2.2 Arguments for Model Modification
The Turbulent Cross-Diffusion Term. In the above equations, the k-equation is directly
modelled after the time-averaged, exact equation for the turbulent kinetic energy. This
equation is thus consistent with the one in other two-equation models. As Wilcox
indicated, however, the greatest amount of uncertainty and controversy usually lies in
the scale-determining equation, i.e. the w-equation. Indeed, the calculations for channel
flows [17] pointed out that the original model returns a too-low near-wall peak of the
turbulent kinetic energy owing to the specific dissipation rate overpredicted. This in turn
makes the near-wall eddy viscosity underestimated.

By comparing the k-w model with the k-¢ model, the relation between w and
€ can be written as

a'e
w = @)
c#k

where ¢, = 0.09, a model constant in the standard k-&¢ model. Equation (7) implies that
the specific dissipation rate w is equivalent to the rate of dissipation of turbulence per
unit kinetic energy. On the other hand, w can also be regarded as a reciprocal of
turbulent time scale or the so-called turnover time of turbulence t = k/e. Since Dw/Dt
= (De/Dt)/k - w(Dk/Dt)/k, the exact w-transport equation can be derived with the aid of
the exact e-equation and k-equation, and takes the form:
d(puw) P up , L oD D,
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where P, II, and D, are the production, destruction and diffusive transport terms
respectively in the exact e-equation, while P and D are the production term and
transport term in the exact k-equation. As with other turbulence transport equations, the
convection of the specific dissipation rate « is balanced by its production, destruction,



and turbulent and molecular diffusion on the right-hand side of equation (8).
Inspecting the exact w-equation suggests that it is more reasonable to model the

turbulent diffusion term in analogy to its viscous counterpart, i.e.

oD D, d M dw KL, 3k dw ®
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k k axj o, axj k axj axl.

Wilcox [11] neglected the viscous cross-diffusion term and modelled the turbulent
diffusion without employing the turbulent cross-diffusion term, see equation (4). It can
be argued that it is the exclusion of the viscous cross-diffusion term that leads to the
incorrect asymptotic behavior of the turbulent kinetic energy [7]. However, if the viscous
cross-diffusion term remains in the modelled w-equation as the wall approaches, i.e.
PRI L 9k _Bpw? =0 (10)

3y k (Ty- dy
then the asymptotic analysis to equation (10) indicates that a negative specific
dissipation rate will result unless the modelled destruction term is positive, which
contradicts the realizability principle of turbulence modelling by Lumley [18]. In
addition, the influence of the viscous cross-diffusion term is negligible in areas where
the turbuience is fully developed and 4 « u,. The viscous cross-diffusion term is thus
omitted in the present modified w-equation.

On the one hand, the addition of the turbulent cross-diffusion term in the w-
equation has no effect on the near-wall asymptotic behavior of both k and ®w. On the
other hand, this term may play a non-negligible role in transporting the turbulent kinetic
energy and its specific dissipation rate in turbulent recirculating flows. Near the wall,
the gradients of k and w are of opposite sign, the term as a whole reduces w and hence
raises k as desired. With the new turbulent cross-diffusion term included, the modified
w-equation becomes

(pu,w) ) ) K, dw K, ok do
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The Values of the Constants. Wilcox's original k-w model was applied to the backward-
facing step flow with a large expansion ratio (W/h = 5), which is relevant to the general
situation of room ventilation with a mixing system where the air-supply inlet is usually
installed under ceiling. It was found that the predicted reattachment length was longer
than the measured by Restivo [16]. This inaccuracy agrees with the fact found in the
calculations for channel flows [17] where the near-wall turbulent kinetic energy is
underpredicted by the turbulence equations in the original model. The straightforward
remedy is to suppress the specific dissipation rate by reducing its production through
constant a in the w-equation, i.e. equation (11). Consequently the turbulent kinetic
energy can be enhanced. To refine the closure constants, several conditions must be
taken into account in order not to break the physical argument for modelling two-
equation turbulence models.

In the wall-layer of a local-equilibrium boundary layer flow, the log-law is
valid. Using this relation and assuming that the production €quals the dissipation of
turbulent kinetic energy, one gets
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Experimental data indicate that ullk = 0.3, which gives
a*B* =0.09 (13)

This is one of the important preconditions to correctly predict the constant-stress layer.
Under the condition of a decaying homogeneous, isotropic turbulence, equations
(4) and (11) become

Ak Bk 40 _ gy (14)
dx dx

This gives the solution to k as
k =X 'ﬂ./ﬁ (15)

Experiments suggest that the exponent (B*/B) has a value of 1 ~ 1.25 during the initial
period of the decaying turbulence. Equation (15) thus requires that

BB =1 ~1.25 (16)

Furthermore, an additional constraint is imposed in the reduced w-equation
when the logarithmic velocity distribution is applied to zero-pressure-gradient local-
equilibrium boundary layer flows. This gives

K
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Equations (13), (16) and (17) form the prerequisites for refining the closure
constants of the standard k-w model. The re-established model constants, therefore, must
satisfy with these conditions.

As indicated by Wilcox [11], setting a* = 1 possesses the generality of using
other values for a*. Indeed, it can be theoretically shown that varying o* only alters the
w-distribution by a factor of a*; the kinetic cenergy and thus the eddy viscosity will
remain unchanged if equation (13) holds. Model constants O, and g, which control the
diffusion rate of turbulence from higher-level regions to lower-level ones, are usually
obtained by computer optimization. The inclusion of the turbulent cross-diffusion term
may reinforce the transport of w. To render a compatible transport for &, the diffusion
of the turbulence energy thus needs to be enhanced. This can easily be achieved by
setting o, < o, The coefficient of the turbulent cross-diffusion term, c,, can be
reproduced from the standard k- model by transforming the g-equation into an w-
equation, which gives ¢, ~ (2.0/0,), where o, is the coefficient for the diffusion term in
the e-equation. Nevertheless, ¢, Was also optimized in this study. The results calculated
by the modified k-w model were found to be fairly insensitive to the constant ¢, in the
range between 0.6 and 1.25.

Based on the above arguments, the closure constants for the modified k-w
model have been established as follows

a® =10, o0 =042, B* =0.09, B =0.075, c, =0.75, o, =0.8, o, =135 (18)



2.3 Boundary Conditions

Inlet. The k-w model takes w instead of ¢ as an independent variable. The velocities .
across the inlet boundary are usually prescribed. The turbulent kinetic energy and its
specific dissipation rate are specified either by the pre-calculated distributions in the
channel flow or by the following equations

k‘” = 1‘5 (Ii"uin)z 8in = CD kin3/2/1in v (19)
W = ubin _ y Kin (20)
" a‘kin in

Here, the turbulence length scale at the inlet, /_, is usually set as a fraction of the whole
inlet height, and c, is a constant. In the present calculations, the Lam-Bremhorst LRN
k-g model was used to get the distributions of the variables in channel flows, which then
were used as the inlet profiles for calculating the backward-facing step flow. When
computing the flow in the two-dimensional confined enclosure, the inlet conditions were
specified by equations (19) and (20).

Outlet. The streamwise derivatives of the flow variables were set to zero at the outlet
for calculating the backward-facing step flow, i.c.

9 6 =u,v, k ©...) (21)

an
Moreover, it is necessary to ensure global mass conservation. When calculating the flow
in the confined enclosure, the velocity was required to satisfy the following relation
along the boundaries of the computational domain

fpu-n ds =0 (22)

where ¢ is the boundary of the computational domain with n as the normal direction,
and the other variables are specified according to equation (21).

Wall Boundary. The w-equation has an exact solution in the immediate proximity of a
wall surface where the viscous diffusion balances the destruction. With a refined grid
in near-wall regions, this asymptotic solution is used to calculate the specific dissipation
rate w at the first node close to the wall surface. In the present calculations, at least one
node is required below y* = 5. This makes it possible to integrate the solution of the k-w
model directly into the viscous sublayer without using the conventional wall functions
or low-Reynolds-number corrections as a bridge. In such an extended-to-wall method,
a zero value can be imposed at the wall for the velocity components and the turbulent
kinetic energy, i.e.

u=v=0; k=0 (23)
The exact limit for w is
0 — bv as y —0 (24)
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When using the Lam-Bremhorst LRN k-¢ model, the boundary value of & at
the wall is specified as

2
e =v Ik (25)
*n
In engineering applications the wall-function method is often preferred to avoid
a highly refined grid near the wall. The wall functions used with the k-w model can be
derived by simplifying the model equations in the logarithmic layer of a boundary layer

flow as
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The velocity profile is assumed to obey the logarithmic law. It can be shown that the
following is satisfied with equations (26)-(28) along a smooth wall surface

u u2 *u
u=_"1In(Ey*), k= w=|& = (29)
K

A
Equation (29) serves as the wall functions for both the modified and the original k-w
models in the calculations.

3 Numerical Method

The differential equations for k& and w, together with those governing the velocity
components, were solved with a computer code CALC-BFC [19]. A collocated grid was
used, in which all variables are stored at the center of the same control volume. To
avoid the unphysical oscillations in the pressure field owing to using a collocated grid,
see Patankar [20], the Rhie-Chow interpolation method [21] was used to calculate the
velocity components at the control volume faces.

In order to reduce numerical diffusion, the convection terms in the momentum
equations were discretized by the third-order accurate QUICK scheme of Leonard [22],
which is an upwind-biased scheme and is hence stable for solving recirculating flows
of elliptic nature. The hybrid scheme [20] was applied to the convection terms in the k
and w equations, and the central differencing scheme was used to deal with the diffusion
terms. In the discrete w-equation, the turbulent cross-diffusion term was added to the
right-hand-side of the algebraic equation when it was positive, otherwise to the left-
hand-side.

The discrete algebraic equations were solved with an iterative procedure, and
the under-relaxation method was used to promote the solution stability. The SIMPLEC
algorithm was used to deal with the coupling between the pressure and the velocity. The



solution of algebraic equations for the velocity components was achieved by applying
the Tri-Diagonal Matrix Algorithm (TDMA), and the pressure correction equation was
solved with the Strongly Implicit Procedure (SIP) algorithm [23].

A solution procedure was terminated when the normalized sum of absolute cell

residuals satisfies

k v
%’?_' <2 (30)

In equation (30), F, is typically the inlet momentum flux, R is the residual of the
algebraic equations, and A is a convergence criterion, which was of the order of 107

The solution is usually affected by the grid arrangement. In particular, when the
calculation is used to verify the turbulence models, the grid-independent solution is
desired. The way to determine the number of the grid nodes is to perform calculations
with gradually refined grids until no obvious difference occurs between the solutions
with two grids. This practice was adopted here.

4 Results and Discussion

The calculation for the backward-facing step flow is first carried out. The recirculating
flow in a two-dimensional confined enclosure is then considered. Results between
various models and experimental data are compared. The model behavior is analyzed
and the effect of the modification is discussed.

4.1 Backward-Facing Step Flow

The flow over a backward-facing step with a large expansion ratio is relevant to room
ventilation with a mixing system where fresh air is often supplied through a slot under
ceiling to create recirculation and mixing. The air velocity at the inlet should be large
enough to fully dilute the indoor contaminants with the induced flow field. On the other
hand, this velocity is limited to avoid the potential local drafts, which are associated
with the local air velocity and turbulence level in the flow domain. The backward-facing
step geometry used here has an expansion ratio of W:h = 5:1, see Figure 1.

blTy

—> Uy

100h

Figure 1. Backward-facing step configuration.



The distributions of the velocity, turbulent kinetic energy and its dissipation rate
at the inlet were specified by solving for channel flows with the Lam-Bremhorst LRN
k-¢ model [24]. The inlet w-profile was obtained from equation (7), which ensures an
identical distribution of the eddy viscosity at the inlet whether using the k- model or
the standard k-¢ model (SKE). With the k-w model, two methods were applied as
described in Section 2, i.e. the extended-to-wall method (eqs. (23)-(24)) and the wall-
function method (eq. (28)). The grids used to obtain the solutions with these methods
were 202 x 86 and 120 x 67 respectively, and they both covered a domain with a
downstream length of 100 times the inlet height.

The prediction of the reattachment length, x,, was first investigated. The
computed reattachment lengths at Re = 5050 with various models and methods are
compared in Table 1, where the Reynolds number, Re, is based on the inlet parameters,
ie. Re = Ugh/v. The Treattachment length was overestimated by Wilcox's k-w model
(WKW) with both the wall-function and the extended-to-wall methods. By contrast, the
modified model is able to predict the reattachment length with a much better accuracy.

Table 1. Comparison of the reattachment length, x,, at Re = 5050.
Experiment SKE* LSKE* WKW* WKW Present* | Present

6.12W 6.16W 6.10W 6.80W 7.40W 6.12W 6.32W

* computed in conjunction with wall functions.
T computed by Skovgaard and Nielsen [25] with the Launder-Sharma LRN k-&¢ model.

With the addition of the turbulent cross-diffusion term in the w-equation, the
predicted x, can be altered by about 10 %. The solution, however, was found to be fairly
insensitive to a coefficient c, ranged from 0.6 to 1.25. A value of c,, larger than about
1.8 will make the solution procedure unstable. The coefficient a, by contrast, had a
significant effect on the prediction of the reattachment length, x,, which changes by
about 1.4 times the step height with an a variation of 0.1.

3 T T T T T T T T T T

500 1500 2500 3500 4500 5500 Re

Figure'2. Reattachment length versus Reynolds number, x /W ~ Re.
—.—.SKE,___LSKE,......... WKW, __,__Present, a Experimental data [16].

10



T T I P PP VP A O T AW E3 NS R e F I L7.

Figure 2 shows the change of the relative reattachment length, x /W, with the
Reynolds number, Re. The results with the Launder-Sharma LRN k-¢ model (LSKE)
were computed by Skovgaard and Nielsen [25]. In conjunction with wall functions, the
modified k-w model predicts similar x, values to those given by the standard k-& model
for Re > 2500. At and below Re = 2500, the calculations with the k-w model were all
performed with the extended-to-wall method. The inlet boundary condition of w at such
a low Reynolds number cannot be obtained by solving for channel flows with the Lam-
Bremhorst LRN k-¢ model because the model produces a laminar solution and thus
feeds back a zero value to both k and &. Instead, the solution of the laminar w-equation
for channel flows was used. This solution, together with the laminar parabolic profile
of velocity and a very low kinetic energy, e.g. 10", were used as the boundary
conditions at the inlet for Re < 2500.

As laminar effects become important, there is a range (Re < 1000) where the
k-¢ model fails to give a converged solution [25]. However, this does not occur when
using the k-w model. The w-equation, unlike the g-equation, possesses a solution as the
turbulent kinetic energy k — 0 with the convection balanced by the production of w.
Below Re = 1000, therefore, both the original and modified k-w models are capable of
yielding a converged solution. However the predictions differ significantly from the
experimental data of Restivo [16]. At Re = 500, the reattachment lengths computed
respectively by the modified and original models are very close, because the molecular
viscosity now dominates over the eddy viscosity so that both the models tend to return
a laminar flow. The models' behavior thus becomes similar.

For the backward-facing step flow at Re = 5050, the distributions of the
normalized mean streamwise velocity and the turbulent kinetic energy along different
vertical cross-sections are shown in Figures 3 and 4, where U, is the air velocity at the
inlet. The predictions are compared with Restivo's experimental data [16].

Figure 3 shows the results calculated in conjunction with the wall-function
method. The variations in the predicted streamwise velocity profiles are very slight,
except in the vicinity of the reattachment point. The obvious difference lies mainly in
the turbulent kinetic energy, which was overpredicted by all three models. Near the inlet
(x = 5h), the standard k-&¢ model produces the closest result to the measured data.

y/H x =5h
1,0

0,8 -
0,6 -

0,4 -

0,2 I
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04 00 04 08 12 0,4
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x =30h

T

08 12 0,0 0,2
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0,4
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Figure 3. Distributions calculated with the wall-function method. _ __ __ SKE,

Present. A Measured yu” /Uy, © Measured u/U,.

Figure 4 shows the comparison between the modified and the original k-w
models by means of the extended-to-wall method. Using Launder and Sharma's LRN k-¢
model, Skovgaard and Nielsen [25] reported a similar prediction. In comparison with the
. wall-function method, the prediction in Figure 4 is hardly improved even though the grid
has been largely refined. Close to both the upper and lower walls, the turbulent kinetic
energy predicted by the original model is lower than that by the modified model. Near
the upper wall, the underpredicted turbulence level by the original model implies that
this model underestimates the near-wall turbulent velocity scale, and thus the eddy
viscosity. This explains why the original model overpredicts the reattachment length.
The present modification, as expected, enhances the predicted near-wall turbulence
energy, particularly after x = S5h. The mean streamwise velocity is consequently
suppressed in the near-wall region, and the predicted reattachment length thus decreases
as desired. The same is also reflected in Figure 3 with the wall-function method.
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Figure 4. Distributions calculated with the extended-to-wall method. ......... WKW,

Present, Ao Measure Vu; /U,, O Measured u/U,.

The results shown above indicate that the modified model is capable of yielding
satisfactory mean flow profiles, and predicting a more accurate reattachment length
whether using the wall-function method or using the extended-to-wall method. With the
modification, the near-wall turbulent kinetic cnergy is enhanced as expected. The
predicted tendency of k is similar to that in the experiment. However, all the models
considerably overestimate the turbulence level (note that the measured data in the figures

are for Yu”, and approximately k2 ~ 1.1 yu [26]). This inaccuracy is undesirable in
ventilation practice because the turbulence level is associated with local drafts.

4.2 Recirculating Flow in a Ventilation Enclosure

The calculations for the backward-facing step flow have shown that an accurate
reattachment length can be predicted by the modified k- model, which shows a similar
performance to the standard k-¢ model in conjunction with the wall functions. To further
verify this model, the flow in a two-dimensional ventilation enclosure was calculated
(Figure 5a), where the inlet-based Reynolds number is 5000. In this flow, a wall-jet
initiated from the inlet reaches the opposite wall, and an overall recirculation is created,
see Figure 5b. This is a general situation that occurs in a mixing room ventilation. In
the following calculations, Lam and Bremhorst's LRN k-¢ model (LBKE) was also used
for comparison. The calculations were performed with 50 x 47 cells for the wall-
function method, and 102 x 132 cells for the extended-to-wall method and the LRN k-¢
model. The calculated results with various models are compared with Restivo's
experimental data [16] (summarized also in [26]) measured along two horizontal cross-
sections (y = #/2 and y = H - h/2) and two vertical cross sections (x = H and x = 2H).

Note that the measured data used for comparison of the turbulence energy are for yu?
and the calculated results in the following figures have been normalized by parameters
based on the inlet velocity and the height of the enclosure, i.e. U, = u, and W, = u, /H.

15



AY

—> 1 h=0.056H

U,
A% | - olen
H
|z
—_—
: >
3H T X

a. Geometry of the ventilation enclosure.

] =i

0 2 4 6

b. Flow field in the ventilation enclosure

Figure 5. Configuration of the ventilation enclosure.

Figure 6 shows the distributions calculated with the wall-function method. As
for the backward-facing step flow, all three models give similar predictions for mean
flow profiles. The turbulent kinetic energy is generally well-predicted in the recirculation
area as can be scen from the distributions at vertical cross sections x = H and x = 2H.
In near-wall regions, however, the turbulence level is underestimated by those models.
This is also reflected in the distributions along the two horizontal sections, i.e. y = /2
(bottom) and y = H - h/2 (top). The original model gives the largest discrepancy in
predicting the turbulent kinetic energy. The result, again, suggests that the original model
underpredicts the near-wall turbulent velocity scale. The modification does enhance the
turbulence level in the near-wall region, but the increment is quite limited. The modified
model performs in nearly the same way as the standard k-g& model does. This can also
be observed from the distributions of the mean streamwise velocity. In the corner under
the inlet (the lower cross-section y = k/2), the original model predicts a positive velocity
region like in the experiment, but afterwards gives the largest error in the next region.
Nevertheless, it means that the secondary eddy in the corner is reproduced by this
model. Along the centerline of the inlet (the upper cross-section y = H - h/2), the
negative velocity near the opposite wall, where a secondary eddy exists, is apparently
underpredicted by all the models, and nearly non-negative velocities predicted by the
standard k-¢ model.
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With the extended-to-wall method, the predictions are compared in Figure 7.
The Lam-Bremhorst LRN k-¢ model (LBKE) is now also involved in the comparison.
The results shown in Figure 7 are similar to those calculated with the wall-function
method in Figure 6. The underestimation by the original model becomes more obvious
for the near-wall turbulence level, particularly near the ceiling. The Lam-Bremhorst LRN
k-¢ mode gives a highest kinetic energy while the original model predicts the lowest.
As the wall-jet approaches the opposite wall (see the distributions at the section y = h/2),
both the original and modified k-w models reproduce the negative-velocity region though
a discrepancy is suffered. The LBKE model, however, does not resolve this secondary
bubble in the upper corner near the opposite wall, and thus the negative velocity is
hardly predicted. This was also found in [25] which used the Launder-Sharma LRN k-g
model. The result predicted by the modified model is more satisfactory in this region.
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The distributions of the specific dissipation rate, w, and the Reynolds shear

stress, -uv’, are shown in Figure 8. The w-profile of the LRN k-¢ model was.
calculated from equation (7). In the vertical cross sections, with the modified model, the
results are similar to those obtained by the LBKE. The variation can be mainly observed
from the horizontal distributions, where the specific dissipation rate of the original model
changes quite differently with a peak emerging along the section y = h/2. A sharper peak
arises also in the section of y = H - h/2. The peaks in the distributions of Reynolds shear
stress are associated with the positions where the mean velocity changes dramatically.
A large change in the velocity may result from a large change in w or k or both, because
they determine the changes in the eddy viscosity that is the only factor the turbulence
affects the momentum in the two-equation models. Along the horizontal cross sections,
the generally higher w values computed by the original model are responsible for the
lower predictions of the turbulent kinetic energy. All three models give a similar
tendency for the Reynolds shear stress, but the confidence of the predictions must be
further verified by experiments.
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Figure 8. Distributions of w and Reynolds shear stress at various cross sections.
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The above results show that the modified k- model and the k-¢ model have
a similar performance in the prediction of the recirculating flow in a ventilation
enclosure. Although the original model works fairly well for predicting the mean flow
profiles, it underestimates the turbulence level with the largest error, particularly in the
near-wall regions. In general, this model is slightly weaker than the others whether using
the wall-function method or using the extended-to-wall method.

The turbulent cross-diffusion term in the modified w-equation plays a role
mainly in the near-wall region, where the gradients of k and w are rather large and
usually of opposite signs. This will therefore drag down the specific dissipation rate and
increase the kinetic energy.

Figure 9 shows the budget of the original and modified w-equations at the
sections x = 2H and y = H - h/2. The addition of the turbulent cross-diffusion term has
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redistributed the contribution of each term. Close to the wall, this term in the wall-jet
(e.g. at x = 2H) is relatively large. The production term, as expected, has been reduced.
Along the central line of the wall-jet (y = H - h/2), there is a peak in the budgets of both
models in front of the opposite wall. This peak is largely damped in the modified w-
equation, owing to the turbulent cross-diffusion term. It explains why the peak in the
horizontal w-distribution at section y = H - h/2 is larger with the original model than that
with the modified model. This peak corresponds to the turning/separation point in front
of the opposite wall, where the wall-jet flow starts to descend.
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It should be pointed out that both the original and modified models give an
incorrect asymptotic behavior of k& with k ~ y >, With the correct asymptotic behavior
for » and &, ie. w ~ y? and k ~ y? as y — 0, the turbulent cross-diffusion term should
have a constant limit behavior as the wall is approached. In both the original and
modified models, this term will tend to zero as y — 0.

To investigate the numerical performance of the models, Figure 10 shows the
maximum normalized residual change with the iteration numbers when calculating the
recirculating flow in the confined enclosure. With the Lam-Bremhorst LRN k-¢ model,
the maximum residual cannot be reduced to 0.001 when starting the calculation with the
QUICK scheme. Instead, the results were obtained by using the QUICK scheme re-
started with a converged solution obtained by means of the hybrid scheme. The
convergence procedure with the LBKE in Figure 10b is thus an illustration of using the
hybrid scheme.
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Figure 10. Comparison of the convergence procedure with various models.
— — —SKE or LBKE, ......... WKW, Present.

It is shown that the modified model is more robust in computational efficiency,
and the LRN k-¢ model has the slowest convergence. One of the reasons for this lies
in the fact that the specification of & at walls has to be coupled with the turbulent
kinetic energy during the iteration as shown in equation (25). By contrast, the k-w
models use the asymptotic solution (at the first grid point) as the boundary condition of
®. Moreover, the turbulent cross-diffusion term in the modified w-equation is usually
negative in near-wall regions, which in turn increases the diagonal dominance of the
algebraic equation system and makes the solution procedure more stable when solving
the w-equation. This is reflected in Figure 10 with both the wall-function method and
the extended-to-wall method. The modified model achieves a converged solution at the
fastest rate. When using the extended-to-wall method, the modified model needs much
less iterations than the Lam-Bremhorst LRN k- model does. This is certainly preferred
in engineering applications since the modified model, on the other hand, possesses a
similar numerical performance.
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§ Concluding Remarks

The two-equation turbulent k- model is implemented to predict recirculating ventilation
flows, and the model's performance has been investigated. Both the extended-to-wall
method and the wall-function method are used in the calculations. The results have been
compared with experimental data and predictions by other models.

In comparison with experimental data, Wilcox's original k-w model overpredicts
the reattachment length for the flow over a backward-facing step with an expansion ratio
of 5:1. The near-wall eddy viscosity is underestimated by this model. To improve the
prediction accuracy, some modifications have been proposed. The model constants are
re-evaluated and a turbulent cross-diffusion term is introduced into the w-transport
equation. With these modifications, a far more accurate reattachment length can be
predicted when solving for the backward-facing step flow, and the results for the
recirculating flow in the two-dimensional ventilation enclosure were also slightly
improved, particularly for the prediction of the kinetic energy. The modified model
shows a similar performance to the standard k-g¢ model when using the wall-function
method, and to the Lam-Bremhorst LRN k-¢ model when using the extended-to-wall
method. .

The computational effort to achieve a converged solution decreases when using
the modified k- model. This reduction results from the exact asymptotic boundary
condition of w and the addition of the turbulent cross-diffusion term. This term is
usually negative in the near-wall region, and thus able to increase the diagonal
dominance of the equation system. The solution procedure consequently becomes more
stable. Less computational effort without any loss in computational accuracy is certainly
preferred in engineering applications.

The results calculated by the modified model are very encouraging. The present
model can be a potential alternative to the conventional k-¢ model for simulating air
flows in ventilated spaces. In particular, when calculating low-Reynolds-number
ventilation flows, the modified k-» model is worth considering for acceptable predictions
of mean flow profiles. Other advantages include the convenience of specifying the wall
boundary condition for w, and not using damping functions as with LRN k-¢ models.
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