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Abstract

The report deals with 2-D numerical calculation of room airflow in an isothermal
annex 20 room. The report documents the ability of the flow solver EllipSys2D to
give results in good agreement with measurements for the specified test case. The
flow solver is a finite volume code solving the Reynolds Averaged Navier Stokes
equations.

Five two-equation turbulence models were tested. These are the standard k — ¢
model, the low-Reynolds number & — ¢ model by Launder & Sharma, the £ — w
model by Wilcox, the k — w baseline (BSL) model by Menter and the & — w Shear
Stress Transport (SST) model by Menter.

Except from the kK —w SST model by Menter, all the models lead to velocity distri-
butions that are in good agreement with measurements. The poor performance of
the k£ — w SST model by Menter for the given flow can possibly be explained from
the limiter applied to the eddy viscosity.

Applying theory for a two-dimensional wall jet, measurements are compared with
calculated values of the turbulent kinetic energy.
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Viscous diffusion of €

Turbulent diffusion of €

Viscous damping function
Turbulent kinetic energy

Turbulent length scale
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Mean pressure

Fluctuating part of pressure
Production of k

Production of €

Turbulence intensity

Velocity

Mean velocity

Fluctuating part of velocity

Effect of molecular viscosity
Sublayer scaled distance to the wall
Distance to the nearest point from the wall
Constants in & —w model
Kronecker delta

Dissipation of turbulent kinetic energy
Dissipation of ¢

Constants in k& — w model

von Karman constant
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Chapter 1

Introduction

The flow in empty ventilated rooms has been studied both experimentally and
numerically. Experiments were carried out in 1978 by Nielsen et al [11]. In 1990
one of the experimental setups was used as a standard configuration for validation
of numerical codes, Nielsen [9]. The codes used to reproduce these experiments are
often based on the solution of the time-averaged Navier-Stokes equations. Different
ways of modelling turbulence exist, however most interest has been given to two
equation models such as the low Reynolds number k& — ¢ model by Launder &
Sharma [3], and the & — w models by Wilcox [21] and Menter [5]. In this report we
concentrate on these models.

The aim of this report is to give a general introduction to turbulence modelling
related to room air movement. The transport equation for turbulent kinetic
energy k and the dissipation of turbulent kinetic energy e are derived from the
Navier-Stokes equation. Furthermore the report documents the ability of the
in-house developed flow solver FEllipSys2D to adequately predict the velocity
distribution for the specified test case. Applying theory for a two-dimensional wall
jet, measurements of the turbulent kinetic energy are compared with calculated
results. Tt is a matter of course, that the best agreement is found in the wall jet.
The FllipSys2D flow solver is a finite volume multigrid Navier-Stokes solver, which
uses a block structured grid in a non-staggered arrangement. The development of
this code was initiated in the beginning of the 90ties by Michelsen [8]. So far the
work with FEllipSys2D has mostly concentrated on external flow, e.g. Sgrensen [18].

The test case is the well known two-dimensional isothermal annex 20 room.
We test the performance of five different turbulence models, two different k& — ¢
turbulence models, a low-Reynolds number model by Launder & Sharma, [3]
in which the transport equations for the turbulent quantities are integrated to
the walls, and the standard model using wall laws. For both models acceptable
numerical results are obtained. Furthermore, we apply the & — w model by Wilcox
[21], in which the turbulent quantity e is replaced by the specific dissipation
rate w. We also introduce two zonal versions of the k& — w model, the baseline
model and the shear stress transport model, both by Menter [5]. The former
is designed to avoid strong dependency of the arbitrary freestream values, i.e.



w. In the latter the eddy viscosity is further redefined to account for trans-
port of principal turbulent shear stress in adverse pressure gradient flow. The
k — w model by Wilcox and the baseline & — w model by Menter lead to acceptable
numerical results, while the shear stress transport model by Menter performs poorly.



Chapter 2

The test case

In this chapter we define the test case to be used in the numerical calculations in
terms of its geometry and inlet condition. Since previous measurements have been
gathered and the test case serves as a benchmark for room air distribution, it is
suitable for the purpose of this report. We consider the 2-D isothermal test case
described in Nielsen [9]. In the annex 20 room, illustrated in figure 2.1, the air is
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Figure 2.1: The annex 20 2-D isothermal test case.

supplied in the upper left corner and exhausted through the opening to the lower
right. The dimensions given in figure 2.1 take the values

H=30m, L=90m, h=0.168 m and ¢t = 0.48 m. (2.1)
We use the inlet velocity

m
ug = 0.455 —, (2.2)
s
and the kinematic viscosity v = 15.3 - 107° %2 This leads to the Reynolds number

h
Rep, = 2% — 5000, (2.3)
14

based on the conditions at the supply opening.



According to Nielsen [9], we estimate the turbulent length scale as

/
lo= — = 0.0168 m, (2.4)

10
. . Vul? .
and choose the turbulent intensity Tu = Y- = 4%. From these values we estimate

the inlet condition

3 _, m?
ko = 5(0.04 up)® A 4.97 1071 ") (2.5)
for the turbulent kinetic energy, and
LL5 2
o = ;_0 ~ 6.60 10~ 7?—3 (2.6)

for the dissipation of turbulent kinetic energy. The inlet condition for the specific
dissipation rate w is specified using the relation

€0
I~

5 —.
0.09kq s

(2.7)

Wy =

Equation (2.7) is derived by equating the eddy viscosity for the standard k—e model
to the eddy viscosity for the & — w model by Wilcox. In the input file for the flow

12
U,

solver, we specify Tu = and either [y or wy, for the £ — ¢ and k — w models

respectively.

Experimental results for the flow are available along two vertical lines,
x =3.0 and z = 6.0, (2.8)
and two horizontal lines,
y = 0.084 and y = 2.916. (2.9)

Measurements of the dimensionless horizontal velocity along the four lines mentioned
in (2.8) and (2.9) are found in Nielsen [9]. This concludes the presentation of the
test case, and we turn to the formulation of the governing equations.



Chapter 3

The governing equations

The governing equation are the continuity and Navier-Stokes equations combined
with transport equations for the two quantities turbulent kinetic energy k, and
dissipation of turbulent kinetic energy €. In this report the equations are presented
using the Einstein summation convention.

3.1 Continuity and Navier-Stokes equations

Assuming that the flow is incompressible, both the continuity equation and the
Navier-Stokes equations reduce to

aui .

prli 0, (3.1)
Ou; Ou; 1 dp 0%u;
oui , owi 1 2
ot s Oz p Oz; v o}’ (32)

where x;, u;, p, p, v and t, respectively, are position, velocity, pressure, density,
kinematic viscosity and time. We decompose the flow quantities, f;, into

filziyt) = Fi(x) + fi(xi,ty), (3.3)
where Fj(z,1) is the time average and f/(x;,;) is the fluctuating part of the quantity.

According to Tennekes & Lumley [20], the time average of the quantity, and the time
average of the fluctuating part of the quantity is defined respectively by

1 to+T
R = Jim 5 [ Rt (3.4)
and
. 1 to+T
T = jim 7 [ (.0~ Pl =0 (3.5)

In this problem f is either the velocity u; or the pressure p. Introducing (3.3) into
(3.1) and time averaging using definition (3.4) and (3.5), we get

k3

81:2- 8@ axl N 8.7;2 N

0. (3.6)



We now insert (3.3) into (3.2), time-averaging and get
(Ui + ul) IUit+wui) 1P +p) O U; + ul)

. q I' B E— ¢ . .
The second term on the left-hand side leads to the product
O(ul)
12\ 3.8
J a.fj ’ ( )
which, due to continuity, can be rewritten as
dulu’
i 3.9
o 39)

Except from this, all terms involving fluctuating parts of the flow parameters vanish.
Therefore, the Reynolds-Averaged Navier-Stokes (RANS) equations can be expressed
as

o s, T pom ' on,

oU; oU; 10P 0 oU; —
(Va.rj — uz-uJ) . (3.10)

The term wju’ is a result of the non-linear convective terms, and is referred to as
the Reynolds stresses. We need to model this term in order to solve equation (3.10).

The full Reynolds stress tensor is symmetric, and consequently it contains six new
unknowns. Deriving transport equations for W from the Navier-Stokes equations
gives rise to third order products of the fluctuating velocities. As a consequence,
the number of unknowns compared to the number of equations cannot be reduced
this way. The latter is known as the closure problem. The problem is circumvented
applying the Boussinesq approximation, in which we assume proportionality between

the deviatoric part of the Reynolds stress tensor and the strain rate tensor

— (U ou)\ 2,

which defines the eddy viscosity v4. The assumption is analogous to the constitu-
tive relation presented in Arpaci & Larsen [1]. From dimensional analysis, see e.g.
Schmidt [16], the eddy viscosity is modelled as

k?
v = Cufu—s (3.12)

where ), is found empirically to be 0.09 from conditions of equilibrium flow, f, is
a damping function used to compensate for low Reynolds number effects in near
wall regions, k is turbulent kinetic energy, and e is dissipation of turbulent kinetic
energy. The divergence of the Reynolds stress tensor (3.11) is

Julu’- 17} oU; a (2
S g R 1
aT] 87‘] <Vt87=]> 87'] (3 J) ’ <3 3)




which we insert in (3.10), and finally obtain

8UZ- an 10 (P + épk) 0 an
ot +Ui dz;  p dz; + Ox; <<V + Vt)aac]) . (3:14)

3.2 The k equation

The turbulent kinetic energy k, is defined as k = Lu/u!. A transport equation for

= Juiul.
k is obtained by multiplying the Navier-Stokes equations with u}. Physically, this
corresponds to requiring conservation of the mechanical energy connected to the
velocity fluctuation. Introducing the decomposed quantities and taking the time-
average we obtain
,0U; , 0l

al/' au’ 84/ au’-
2 Ilr‘ ? 2 1,1 ? [

axj—l—u;-Uj +u +uiu !

Ox; U oz, iz,
1 ,8P , ap /aZUi ,aQUZ-

Taking the time-average, introducing the transformation

o _o(bu) _ ok

— = = 3.16
Uzal'j 6:1:_7- 6:1:_7- ( )
together with continuity, we obtain the transport equation
Ok [ —T A TS 0%l
AR § kSN I et I i dy —t 3.17
o T ae, T T e, T Ba; ( PRI R (3.17)
————— ———’
Pr Dy, Vi

for the turbulent kinetic energy. In (3.17) Py, is the production of k, Dy is interpreted
as the diffusion of k, and V;, is the effect of the molecular viscosity.

Applying the Boussinesq approximation (3.11), the production term Py is modelled
by

ou;  oUy\ ou; 2. . aU;
= — 2k
Pk . <a£€] i a:&) &r]- 3 7 &r]-
ou;  9U;\ 0U;
= . .

The latter reduction occurs due to continuity for the incompressible case. The
diffusion term is modelled using a gradient transport hypothesis

a 147 ak
D, = — _ 1
"7 gy < ) ’ (3.19)

oy 0z



see Speziale et al [17]. Here oy is the turbulent Prandtl number, normally taken to
be unity. Finally, we rewrite the term due to the effect of the molecular viscosity

and get
il
Vi = vu! &x?
0 , O ou! du!
= UV U- — UV
830]- ’8.7:]- 8;cj 8@-
0 , O

where € denotes the isotropic dissipation of turbulent kinetic energy.

We insert (3.18), (3.19) and (3.20) in (3.17) and finally obtain

o tlig = <amj + a) 90, | K + a) a_] —e (32

3.3 The ¢ equation

In the previous section we defined the dissipation of turbulent kinetic energy as

Aul Oul . dul g . .
= 2 2 2 —
€= Vg o, By applying the operator Y 5z, Ba, to the Navier-Stokes equations,

again introducing the decomposed quantities and taking the time average, we get

Vaui d | o(U; + ul) (U + UDE)(U?; + u;)
8x]~ 8x]~ ot axj
o T Ir

dui 9 |10(P+p) 0*(U; + ul)

= L - 2. 3.22
V(?:vj dz; |p Oz; v dx? (3:22)
—_— —_——
177 v

From (3.22) we now derive the e-equation. To maintain the overview we follow the
rigorous procedure used by Schmidt in [16]. We write the terms in their full extent



and obtain

17

II1:

IV :

au. 0°U;

Val‘]’ 8m]-8t

8,7:]- 8m]-8t -

ou! 0 <Uj

Va.rk 8;ck

dul 0 (,an

V@xk 8xk

u.
]axj

0 4, 0Us Out 0
al'k a.L] 8“

0°U; , ou

Val'j 8xk al'k Val'jaxk jaxk
dul dul Ou
1%

Oe oU;

U

v u:
8$ja$k J al‘k

jal'j i Va.rk

p

o | 1
Va—T] uj§ aTk

! ! !

v

8@- 8@8@

Oul 9*P
8;cj a$¢a$3
Loul P

v ]

v ]

ou’

0+I/2 2

8xk 8:zrj8xj8xk

vde
20927~ " \ 0,01,

We introduce (3.23)-(3.26) into (3.22) and obtain

De

E:

)] A

, 02 |1
V@x]ﬁ:cj §

,PE - QE _DE +D’U7

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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where

De Oe Oe

DT TR
o0, (O O Oul
— _2 k3 k3 k3
& e (axj ey O, a;L-J)

ul Qul: Iu’; 5 o*U; |, o

_ 4 ! [

v v u,
87‘] aTk aTk aT]aTk ]a."l,'k7

o2u. \?
@E — 2 2
Y (830]8351) ’

- 2

p o WO (0w oy 9|, (0w

o p Oz; \ Ox; Oz; Vax]- i dzy ) |’
0%¢

DU = Vw.

J

The four terms on the right-hand side of (3.27) are respectively production, dissipa-
tion, turbulent diffusion and viscous diffusion of the dissipation of turbulent kinetic
energy. Due to the complexity of the terms in (3.27), the production and dissipation
are modelled by multiplying the corresponding terms in the transport equation for
k with £, a constant and a damping function. The damping function is introduced
to ensure correct behaviour of € near the walls. The turbulent diffusion is modelled
using a gradient transport hypothesis similar to that of the k& equation. Hence the

transport equation (3.27) now becomes

De € — OU; 0 v\ Oe €?
E = Celfl% <_71’i11’j,) al‘j + 8—% [(V + > 8—56]:| - Ce2f2?7 (328>

O

where o, 1s the turbulent Prandtl number.



Chapter 4

Two-equation turbulence models

In the literature, numerous refinements for the turbulence models have been sug-
gested. Tt is not in the scope of this text to discuss all these, though some are
of interest. Since we consider an internal flow, attention will be paid to near-wall
behaviour of turbulent flows, damping functions and the boundary conditions. Fur-
thermore, we describe variables and constants occurring in the turbulence models
chosen for testing. We distinguish between two types of turbulence model, low
and high Reynolds number models. In the former the transport equations for the
model variables are integrated to the walls, while for the latter we use the log-law
to approximate turbulent quantities close to the walls.

4.1 Adjustment of the turbulence models

4.1.1 Near-wall behaviour

To carry out near-wall asymptotic analysis for the different terms in the transport
equations, we introduce the Taylor series expansion for the fluctuating velocity com-

ponents
v = ay+ay’ ..., (4.1
v = by + by’ 2
w = cyteyt+..., (4.3)

where y is the direction normal to the wall. Due to no-slip ag = by = ¢y = 0, and
from continuity by = 0. From (4.1)-(4.3) it is a straightforward matter to show that

kE=0(y*), e¢=0(1). (4.4)

The near-wall behaviour of a number of other terms is found in Speziale et al [17].
It is obvious that reliable numerical results for near-wall flows are only to be expected
from turbulence models containing asymptotic consistency with (4.4).

11
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4.1.2 Damping functions

Improved prediction of the flow close to solid boundaries can be obtained using
damping functions to adjust the model equations. The function f, is introduced to

dampen the eddy viscosity in regions near the walls. Applying asymptotic analysis

presented in the previous section, it is easily found from (4.4), that f, = O <%>
Furthermore we require that f, approaches one as we increase the distance from
the wall. The expression for f, is obtained using experiments or direct numerical
simulation. The same considerations can be applied for the damping functions f;

and f, appearing in (3.28), see e.g. Speziale et al [17].

4.1.3 Boundary conditions

Another important numerical problem that occurs is the absence of natural bound-
ary conditions for the dissipation of turbulent kinetic energy. Various proposals
for boundary conditions that circumvent this problem have been suggested over the
years. The boundary conditions mentioned below are described in details in Speziale

el al [17].

As a rigorous consequence of the transport equation for the turbulent kinetic energy,
we could use the boundary condition

>k _
V8y2_

Since (4.5) contains second order derivatives of k, this leads to considerable numer-

€. (4.5)

ical stiffness. An alternative version of (4.5) is

Wk
v (W) = ¢. (4.6)

Even though the numerical properties are improved, they are still not satisfactory.
Alternatively, the Neumann boundary condition

Je

— =0 4.7

ay 9 ( )
with improved numerical robustness is commonly used. However, this is completely
ad hoc and cannot be justified, neither theoretically nor experimentally.

As a final remark we mention that the balance of terms at the walls involves higher
order correlation which exacerbates the problem with numerical stiffness. This
problem is discussed in further details in Speziale et al [17].

The above describes some of the problems that have to be taken into account when
using turbulence models in the simulations. The list is by no means complete, but
contains the topics that are most relevant for the flow considered in this report.
We now present the different models chosen for testing. For additional information
concerning the models, see e.g. Schmidt [16].
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4.2 Standard k£ — ¢ model

For this model the transport equations for the turbulent quantities take the form

Dk Tz’j 8UZ 8 Vy 8k
— = — —)— = 4,
Dt p Oz; + Ox; {(V+ Ok @;vj ‘ (48)
De e 7; OU; 0 vy Oe €2
DL Cd%?axj + d—x] [(V + U_E>d—xj:| - CleQE- (4.9)
The eddy viscosity is
12
ve = Cufu— (4.10)
The model constants are
C,=0.09 o0, =10 o.=1.3
Ca =144 C., =1.92, (4.11)

and the damping functions
fu=f2=1 (4.12)

In the model the transport equations are not integrated to the walls. Instead the
production and dissipation of kinetic energy are specified in the near-wall cell, using
the logarithmic law-of-the-wall. The value of € is specified the same way. A more
detailed description of the wall laws can be found in Sgrensen [18].

4.3 Low Reynolds number i — ¢ model by Launder
& Sharma

A low-Reynolds number k£ — ¢ model is presented by Launder & Sharma in [3]. A
new variable € is defined as

(4.13)

aVE\
on ’

e=¢+ D D:2y<

where n is the direction normal to the wall. Compared to ¢, € has the advantage of
the natural boundary condition € = 0, at the walls. For addition, it is proposed by
Launder & Sharma that the term

2 2
E =2v1, <8 U) , (4.14)

0y?

is added to the right-hand side of the transport equation for e. The term is added to
compensate for additional production and to further balance diffusion and dissipa-
tion in the vicinity of the walls. With the new variable (4.13) and the term (4.14),
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the transport equations for the turbulent variables becomes

Db _ ol | 0 [, v 0k
Dt p Ox; Oz oy 0z
gTij oU; 0 Ve O€

De ¢?
o, <z LA B R 0} 4.1
Dt Clk p Oz, + Ox; {(V+ Jg)al‘j] CQka + (4.16)

] — (¢4 D) (4.15)

The eddy viscosity is defined as
12
vy = Cﬂfﬂ?. (4.17)

The term D is approximated as follows

D=2 (a\/g> 2 ~ 2 (v\/E)Z. (4.18)

on
The constants are

C, =009 0,=1.0 o, =13
Co =144 Cpy=1.92, (4.19)

and the damping functions are both functions of the turbulent Reynolds number

]{72
Ri=—. (4.20)
The damping function for the eddy viscosity is
Ju=exp % ; (4.21)
and the damping function for the dissipation term in (4.16) is
f2=1—=03exp(—R}). (4.22)
The boundary conditions at the walls are
k=0 and ¢, =0, (4.23)

4.4 Lk — w model by Wilcox

Already in 1942 Kolmogoroff suggested the specific dissipation rate w with dimension
time~! as an alternative to e. In 1988 Wilcox [21] presented his k& — w model based
on the original transport equation by Kolmogoroff. The noteworthy property of this
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model is that the demand for damping functions in near-wall regions is rendered
superfluous. The transport equations are

T 78%— + a—mj {(1/ + Jklyt)azvj BF*wk (4.24)
Dw n oU; 0 OJw

= 4+ — [(u + o) —

Dt~ puy T Jz; | O, ] P (4.25)

Ox;
The eddy viscosity is defined as

k
= - 4.26
Vi (.0’ ( )
and the model constants are
op =05 o, =05 B, =0.0750 5 =0.09
0.41 b o (4.27)
K = . ’)/ = — — Jw . .
1 i 1 JF
The boundary conditions are
6v
ky =0 and w, =10———, 4.28
Bi(Ay)? (4.28)

where Ay is the distance to the nearest point from the wall. In the first grid
point above surface we require y* < 3, for (4.28) to be applicable. The boundary
conditions are suggested by Menter [5], who also proposed that a limiter is applied
to the production term in the k& equation. This should relieve excessive production
of turbulent kinetic energy and numerical "wiggles’. The limiter takes the form.

P = min(P;20Dy), (4.29)

where Dy is dissipation of turbulent kinetic energy.

4.5 k — w BSL model by Menter

The £ — w model by Wilcox has the disadvantage of being highly sensitive to w
specified in the freestream, see Menter [6]. For the same reason Menter [6] proposed
the & — w baseline (BSL) model, combining the & —w model by Wilcox in the inner
region of the boundary layer, and the standard k& — ¢ in the outer region and the free
stream. The transport equations for the baseline model by Menter are

Dw R U, 9] Ow :| +o(1 - F1)Uw21 ok Ow

Dt 8% * dx; [(V * U“’”t)axj wdz; Ox;

(4.31)

The transport equations are obtained by transforming the & — € model into a & — w
formulation, and using the blending function F;. The blending function is designed
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to be one near walls and zero away from surfaces. Compared to the transport
equation (4.25), equation (4.31) differs by the appearance of an additional cross-
diffusion term. We use the eddy viscosity

(4.32)

Vy =

k
"

The inner constants are

o1 = 0.5 o, =05 B =0.0750 3" =0.09

%31 K

2o —, 4.33
5 N (4.33)

which are similar to those of the & — w model by Wilcox. The outer constants are

k=041 v =

o2 = 1.0 0,0 =0.856 [, =0.0828 B* =0.09
Ba K’

= T 0w
B VB
corresponding to the standard & — ¢ model. The constants for the inner model ¢,
and the outer model ¢,, are mixed to give ¢ using the blending function F;. We get

k=041 v = (4.34)

¢=Fidr + (1 = F1)2, (4.35)
where
Fy = tanh(arg?). (4.36)
Here
g, = min s (B0 ], ()
where y is the distance to the wall and
CDy, = maz <2aw%§—ig—;, 10-20> . (4.38)
The boundary conditions are
ko =0 and w, = 10——20 (4.39)
Bi(Ay)?

identical to (4.28).
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4.6 k — w SST model by Menter

The Shear Stress Transport (SST) model is identical to the baseline model, except
that the constants for the inner model are changed to

op1 = 0.85 0,1 =0.5 B =0.0750 B = 0.09

b " 0.31 (4.40)
-2 — Owl —F—=, a1 = VU. 5 .
B* VB

and the eddy viscosity is now defined as

k=041 v =

V= ma:z:(cjllj; 0F) (4.41)
where
F, = tanh(arg}) (4.42)
and
arg, = maz (20.(;./92; 5;;2:) _ (4.43)

The modified eddy viscosity accounts for the transport of principal turbulent shear
stress, 7. According to Menter [6], the new eddy viscosity leads to improvement in
performance compared to the & —w model by Wilcox, as well as the standard k& — ¢
model.



Chapter 5

Solution procedure

The numerical code is a 2-D finite volume code in general curvilinear coordinates,
based on the Basis2D platform developed by Michelsen [7] and Sgrensen [18]. We
solve the Reynolds averaged isothermal incompressible Navier-Stokes equations us-
ing block structured, cell centered and non-staggered grids. The convective terms
are discretized using a second order upwind difference scheme (SUDS). For the k — ¢
models we use SUDS without limiter, while a limiter is added to the & — w models,
in order to avoid 'wiggles” at the expense of increased numerical diffusion.

In the solution procedure we first have the predictor step, in which the linearized
decoupled equations for the variables U; and P are solved. In the following cor-
rector step, continuity is enforced by adjusting pressure to get the right mass flux
through the cell-faces. The procedure is known as the SIMPLE algorithm, de-
scribed by Patankar & Spalding in [13]. The transport equations are solved using
a TDMA solver in alternating direction. The pressure correction equation can be
solved quicker using a multigrid technique. The overall calculation time is further
reduced applying a three level grid sequence. Using under-relaxation, convergence
properties are improved, and pressure decoupling is avoided applying the Rhie/Chow
interpolation technique, see Rhie [14].
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Chapter 6

Computational grid

6.1 Hyperbolic netstretch

In this section a function for hyperbolic netstretch is suggested, based on a hyper-
bolic tangent function. Denoting the start and ending points for the mesh by yy and
y1, respectively, a general function for the distribution of the points may be written
as

y=yo+ (1 —w)f, (6.1)

where the function f lies in the interval from zero to one, both included. Using
hyperbolic tangent functions, three variations of the function f may be used, de-
pending on the desire to stretch towards both zero and one, towards zero only or
towards one only. Using the information that f(j = 1) = 0 and f(j = ny) = 1, the
three functions can be described as

ny—1

tanh (K (2+ Ky)) — tanh (K - Ky) ’

tanh (K <2(j_1) + K1>> —tanh (K - Ky)

IG) = (6.2)

tanh (K (5= il (6.3)

1G) = tanh(K)

and

1) - thf]h((:)) , (64

respectively. K and Kj in (6.2) is determined by the required cell heights in the
first and last cell, K in (6.3) by the required cell height in the first cell and K in
(6.4) by the cell height in the last cell.
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Using the function stretching towards both ends, (6.2), as an example, and denoting
the required cell heights in the first and last cell by so and sq, respectively, (6.2)
for the first and last cell becomes

tanh (K (n;—_l + [\"1)) —tanh (K - K;)

‘) pu— pu—
J@) = N e B —tanh (K Ry ™ (6:5)
and
tanh (K (2252 4 K, )) = tanh (K - K))
fly—1) = LIS ———=1-5,  (66)
tanh (K (2+ Ky)) —tanh (K - K7)

where Sy and S; are the original values of sy and s; divided by (y; — yo). For use
with the Newton-Raphson method, the equations may be rewritten as

tanh (K (nyL_1 + K]>> —tanh (K - Ky)

1) = — .
F(1) =5 tanh (K (2 4+ Ky)) — tanh (K - Ky) (6.7)
and
tanh (K (2(7;1;’7__12) + K]>) —tanh (K - Ky)
F(2)=1-5, - (6.8)

tanh (K (2 + Ky)) — tanh (K - K)

Thus, by solving the non-linear system of equations governed by (6.7) and (6.8),
the coefficients K and K; can be found. The solution is performed by standard
methods. After determination of K and K, the equations (6.1) and (6.2) are used
to calculate the grid-point positions. Similar procedures are carried out for the
functions stretching towards one end only. Here only one unknown K value exist.

6.2 Dimensionless sublayer-scaled distance

The dimensionless sublayer-scaled distance y*, is the most common parameter for
evalution of netstretch towards walls. The definition is
u,Ay
yt = , (6.9)

14

where Ay is the normal distance from the wall to the first grid point, v is the
kinematic viscosity and u. is the friction velocity

U, = T—w, (6.10)
p

in which p is the density of the fluid and the wall shear stress is defined as

d
Ty = up%. (6.11)
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Assuming that the velocity varies linearly from zero to the first grid point, we get

Uy
= UPA—y’

Tw (6.12)
in which Ay is the distance to the first grid point above the surface and wu; is the
computed velocity in this point. Using a low-Reynolds number turbulence model,
(6.12) apply, and y™ is easily determined from (6.9). For a high-Reynolds number
model the wall shear stress can not be estimated using (6.11). Instead introducing
the dimensionless velocity

ut = —, (6.13)

In(y*) + B, (6.14)

see Wilcox [22]. We use £ ~ 0.41 and B = 5.0 for the Karman constant and the
dimensionless constant, respectively. Introducing (6.9) and (6.13) into (6.14) yields

= —Ilny* + B, (6.15)

considering now the first grid point above the surface. The non-linear equation
(6.15) is solved by standard methods.

For low-Reynolds number turbulence models y* should be kept below 1, and for the
high-Reynolds number models we require 30 < y* < 100.

6.3 The computational domain

Figure 6.1: The boundaries and blocks for the computational domain.

Here a brief discussion of the computational domain, see figure 6.1, is given. For
numerical reasons a short inlet and outlet is added to the geometry of the testcase
shown in figure 2.1. With no inlet, an abrupt change in velocity occurs in the sup-

ply opening. This is smoothened adding an inlet of length L.: = %. A small
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recirculation zone occurs in the first part of the outlet. Since Ellipsys2D uses the
Neumann boundary condition at the outlet, numerical problems occur if air is sup-
plied through an outlet boundary. The problem is circumvented designing an outlet

containing the entire recirculation zone, here we choose Lyyier = %

The grid for EllipSys2D is build from 18 blocks all containing j? grid points. To
ensure a satisfying resolution of both the boundary layer along solid boundaries and
the shear layer caused by the inlet, the blocks are arranged as shown in figure 6.1.
Hyperbolic netstretch in one or two directions is used in all blocks. When stretching,
Yo and y; are fixed due to the block boundaries, while sq and s; are chosen to give
yT < 1 along solid boundaries for the low Reynolds number models and y* > 11 for
the high Reynolds number models. Stretching towards the inner block boundaries
ensures that the distance to the first grid point is the same on each side of the
boundary. Tt is our experience that the distance to the first grid point along the
solid boundaries should be

Ayleft o 00007, Ayfloor ~ 00006, Ayright ~ 00007, Ayceﬂmg o 00002, (616)

for y* < 1 to apply everywhere. Similarly we experienced that the the requirement
yT > 11 is fulfilled almost everywhere, if

Ayleft _J 0.01, Ayﬂoo,ﬂ ~ 00016, Aym-ght ~ 0.01, Ayceﬂmg ~ 0.0016. (617)

For the given arrangement of the blocks, it was not possible to design a grid with
both a satisfying resolution of the wall jet and 30 < y* < 100.

Finding a grid independent solution the number of points j are increased until the
change in horizontal velocity profiles along the four lines given in (2.8) and (2.9) can
be neglected for increased j. This is evaluated by inspection.

In appendix A the number of points required to obtain a grid independent solution is
determined for the various models. The result is summarized in table 6.1. It was not
possible to obtain a grid independent solution for the £ — w SST model by Menter.
In the next chapter we use the results obtained with the 32x32 grid for this model

In figure 6.2 an example of a grid is given.

Turbulence model j | Total number of grid points
Standard & — ¢ model 16 4608
k — ¢ model by Launder & Sharma | 32 18432
k — w model by Wilcox 32 18432
k — w BSL model by Menter 32 18432
k — w SST model by Menter - -

Table 6.1: Number of grid points required to obtain a grid independent solution for the
considered turbulence models.
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Figure 6.2: Computational grid consisting of 18 blocks each with 16% grid points.



Chapter 7

Results

We now present the numerical results obtained, using the five different turbulence
models for the testcase presented in chapter 2. For the two-equation turbulence
models introduced in chapter 4, we use the following abbreviations

k—e¢ HI RE : Standard & — ¢ model
k—eLS : k—elow Reynolds number model by Launder & Sharma
k—w ORG : k — w model by Wilcox
k—w BSL : k — w BSL model by Menter
k—w SST : k—w SST model by Menter.

=)

Figure 7.1: Typical picture of streamlines using the models £ — ¢ HI RE, £k — ¢ LS,
k —w ORG or k£ — w BSL.

N

-

Figure 7.2: Typical picture of streamlines using £ —w SS'T model.
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7.1 Comparing velocities

In figure 7.3 and 7.4 computed velocities at the positions = 3.0 and = = 6.0 are
compared with measurements. At z = 3.0, figure 7.3(a) and figure 7.4(a), the low
Reynolds number models tend to overpredict the velocity close to the ceiling, while
the standard k£ — ¢ model is in good agreement. Near y = 2.5 all the models slightly
underpredict the velocity, worst for the & —w SST. Close to the floor the two k& — ¢
models show good accordance with measurements, while the & —w ORG and the
k —w BSL underpredict the velocity and the velocity computed with the & —w SST
has the wrong sign.

At the position z = 6.0, figure 7.3(b) and figure 7.4(b), the standard k — ¢ model
underpredicts the velocity close to ceiling. The low Reynolds number models show
good agreement here. At y = 2.5 all the models show better accordance with
measurements than for 2 = 3. Though a relative strong discrepancy has now occured
close to y = 1. Since the same deviation is predicted by all the models, we have
reason to believe that the phenomenon is a three dimensional effect. So could be
the case for x = 3 and y = 2.5. Except from the £ — w SST all the models fit the
measurements well close to the floor.

In figures 7.5 and 7.6 computed velocities are compared with measurements at the
positions y = 0.084 close to the floor, and y = 2.916 close to the ceiling. Close
to the ceiling, figure 7.5(b) and 7.6(b), the best agreement between measurements
and computation is found for the low Reynolds number models. However, a clear
discrepancy between measurements and computations is found close to the boundary
of the recirculation zone in the upper right corner of the room. The phenomenon
i1s common for all the models, but it seems as if the passage from the main flow to
the small recirculation zone is predicted best by the £ — ¢ LS. Close to the floor,
figure 7.5(a) and figure 7.6(a), the standard k — ¢ model shows better agreement
with masurements than the low Reynolds number models. The & —w SST shows
very poor accordance with measurements close to the floor. From figure 7.6(a), we
observe that the &k —w ORG and the k£ — w BSL predict a steep drop in the velocity
at & 2.5. This phenomenon is observed neither in the & — ¢ models nor in the
measurements.
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(a): x=3.0 (b): x=6.0
3
25F b b
2l 4 4
>15f 1 1
1| 4 4
05 1 1
— k- HIRE
—k-€LS
O : Measurements
0 . .
-0.5 0 0.5 1 1

Figure 7.3: Dimensionless velocities . along two vertical lines for the £ — ¢ HI RE and

k—e LS. Measurements along the same lines in the symmetry plane of the three-dimensional
room.

(a): x=3.0 (b): x=6.0
3 -
25F b b
2L A A
>15F B B
1k A A
(]
0.5F O B il
8 —-: k-wORG
o — k-wBSL
Q 1 k-w SST
! O : Measurements
0 |
-0.5 0 0.5 1 1

Figure 7.4: Dimensionless velocities 7~ along two vertical lines for the £ — w ORG,

k —w BSL and k& — w SST. Measurements along the same lines in the symmetry plane of
the three-dimensional room.
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(b): y=2.916
15 T T

1 2 3 4 5 6 7 8 9
X
(a): y=0.084
0.4 T T
— - k-eHIRE
0.2 — kLS y

O : Measurements

Figure 7.5: Dimensionless velocities % along two horizontal lines for the £ — ¢ HI RE

and k — ¢ LS. Measurements along the same lines in the symmetry plane of the three-
dimensional room.

(b): y=2.916
15 T T

-0.5 1 1 1
1 2 3 4 5 6 7 8 9
X
(a): y=0.084
0.4 T T T
— —k-wORG
0.2 — k-wBSL

1 k-w SST
O : Measurements

Figure 7.6: Dimensionless velocities - along two horizontal lines for the & — w ORG,
k —w BSL and k£ — w SST. Measurements along the same lines in the symmetry plane of
the three-dimensional room.
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7.2 Comparing turbulent kinetic energy

The turbulent kinetic energy is an important quantity to assess the validity of the
turbulence models. A comparison of this quantity is troublesome, since measure-
ments are in one direction only.

According to [10], the correlation between the normal stresses in a two-dimensional
wall jet is given by

11,’22 ~ 0.6 71,’12 and gf ~ 0.8 11,’12. (7.1)

We introduce (7.1) in the definition for the turbulent kinetic energy and thus

VE ~ 1.1\ ul?, (7.2)

If instead, we consider the flow as a boundary layer on a flat plate, a different
correlation between the normal stresses is measured by Klebanoff, see Schlicht-
ing [15]. Using this correlation the factor 1.1 in (7.2) would take both higher
and lower values throughout the boundary layer. 1In general only an incre-
ment of this constant would improve the agreement between computations and
measurements, see figures 7.7-7.10. For simplicity we therefore use the relation (7.2).

In figure 7.7-7.10 calculated values of % are compared with measurements of @
for the various turbulence models. Except from the & — w SST model, the models
give almost similar distribution of the turbulent kinetic energy. The models tends
to underpredict the turbulent kinetic energy, except in the wall jet, i.e. y between
2.5 and 3 in 7.7(a) and figure 7.8(a), and a small region close to y = 1.5. It is not
clear whether the good accordance between measurements and computations in the
wall jet should be ascribed (7.2) or the fact, that we are close to the supply opening
in which the turbulence intensity is specified. The tendency for the used models
to underpredict the turbulent kinetic energy is also reported by Schmidt [16] for
the flow past a fence on a wall. We restrict ourselves to these conclusion due the
uncertainty on the measurements. An interesting task for future studies is to carry
out measurements in more than one direction. This would enable us to evaluate the

expression (7.2) and conclude further on the performance of the turbulence models.
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Figure 7.7: Turbulent kinetic energy

1.1u,

along two vertical lines for the £k — ¢ HI RE and

/12
k — ¢ LS. Measurements of L1 in the symmetry plane of the three dimensional room.
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Figure 7.8: Turbulent kinetic energy % along two vertical lines for the £ — w ORG,
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Figure 7.9: Turbulent kinetic energy along two horizontal lines for the £ — ¢ HI RE

12
and k —¢ LS. Measurements of uol in the symmetry plane of the three dimensional room.
(b): y=2.916
0.2
T T ‘GUJOO
(e]
o © ¥
0.15 o © o o o © 0 4
© o O o O o0 o
g © -
sho.lfo = *‘~‘_“‘ B
- .~ = < = = \
0.05 NZ=N
0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
X
(a): y=0.084
0.2 T T T T
— = k-wORG
— k-wBSL
0.15 - k-wSST o b
O : Measurements o S o
@ o © o © o 0 o © o ° 4
E 0.1+ 0.%0 © N
=1 OOO o O~ 0
[eXe] ]
005} R g
0 Bl — | | | | | | |
0 1 2 3 4 5 6 7 8 9

Figure 7.10: Turbulent kinetic energy % along two horizontal lines for the £ —w ORG,
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k —w BSL and k£ — w SST. Measurements of ;_‘01 in the symmetry plane of the three
dimensional room.



Chapter 8

Conclusion

In this report we have documented the ability of the flow solver FllipSys2D to give
velocity distributions in good agreement with measurements for the annex 20 room.

A detailed presentation of the two-dimensional isothermal annex 20 testcase is given.
Subsequently we use decomposition of the flow quantities for a rigorous derivation of
the transport equations for the turbulent quantities & and . We briefly discuss near-
wall asymptotic analysis, damping functions and boundary conditions, which are all
interesting topics related to wall bounded flows. Furthermore, we describe in detail
the five turbulence models chosen for testing. A method for hyperbolic netstretch
is presented. Finally we discuss the solution procedure for the flow solver, before
presenting the numerical results.

The numerical results achieved with the standard £ — € model, the low Reynolds
number k — ¢ model by Launder & Sharma, the £ —w model by Wilcox, and the £ —w
BSIL model by Menter are almost equally good and leads to results in reasonably
good agreement with measurements. Integrating the transport equations for k£ and ¢
to the walls instead of using wall laws has little to no effect on the numerical results,
though the number of grid points needed to obtain a grid-independent solution
are increased considerably. For the given flow it was impossible to both obtain a
satisfying resolution of the wall jet and at the same time fulfill the requirement to
the value of the sublayer scaled distance for the standard & — e model. Therefore, for
this kind of flow, these models should be used with caution. For the £ —w model by
Wilcox and £ —w BSL model by Menter an extraordinary behaviour of the horizontal
velocity component is found near the lower left corner. The four models mentioned
above all show the same discrepancy between calculation and measurements close
toy =1 and x = 6. We have reason to believe, that this phenomenon is caused by
three-dimensional effects.

Finally the & — w SST model by Menter performed poorly. We believe that this is
caused by the limiter added to the eddy viscosity, but it is not investigated further.
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Appendix A

Study on grid influence

A.1 Standard k — € model

(a): x=3.0 (b): x=6.0

25

05

L along two vertical lines in the sym-
)

Figure A.1: Dimensionless horizontal velocities,
metryplane.
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(b): y=2.916

(a): y=0.084
0.4 T T T

2 along two horizontal lines in the

Figure A.2: Dimensionless horizontal velocities,
symmetryplane.
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A.2 Low Reynolds number ik — ¢ model by Launder
& Sharma

(a): x=3.0 (b): x=6.0

05

Figure A.3: Dimensionless horizontal velocities, %, along two vertical lines in the sym-
metryplane.

(b): y=2.916

-0.2 L L L L L L L L L
1

(a): y=0.084
0.4 T T T

Figure A.4: Dimensionless horizontal velocities, %, along two horizontal lines in the

symmetryplane.
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A.3 Lk — w model by Wilcox

(a): x=3.0 (b): x=6.0

25

Figure A.5: Dimensionless horizontal velocities, %, along two vertical lines in the sym-

metryplane.

(b): y=2.916
12 .
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Figure A.6: Dimensionless horizontal velocities, %, along two horizontal lines in the

symmetryplane.
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A.4 k — w BSL model by Menter

(a): x=3.0 (b): x=6.0

25

u

Figure A.7: Dimensionless horizontal velocities, s along two vertical lines in the sym-

metryplane.

(b): y=2.916
12 .
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-1

Figure A.8: Dimensionless horizontal velocities, %, along two horizontal lines in the
symmetryplane.
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A.5 k —w SST model by Menter

(a): x=3.0 (b): x=6.0
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Figure A.9: Dimensionless horizontal velocities, s along two vertical lines in the sym-

metryplane.

(b): y=2.916
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Figure A.10: Dimensionless horizontal velocities, %, along two horizontal lines in the
symmetryplane.



