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1. INTRODUCTION

Computational results of two two-dimensional benchmark cases specified by Nielsen (1990) are
presented. The isothermal case (2D1) is suitable for the testing of CFD codes because reliable
measurements exist. The aim of the nonisothermal case (2D2) is to predict a strong buoyant
effect. Results with the WISH code (Lemaire 1989c) are presented and compared with
measured ones given by Nielsen (1990). Some results with the Fluent 2.99 code (Creare 1987)
are also given in order to study the effects of the computational grid and differencing schemes.

2. GEOMETRY AND BOUNDARY CONDITIONS

The test room is shown in Fig. 1. The geometry is specified by H = 3.0 m and L/H = 3.0, h/H
= 0.056 and t/H = 0.16.
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Figure 1. Geometry of the two-dimensional test case
The inlet velocity u, is calculated so that the Reynolds number

Re = h uyv = 5000

will be the same as in model experiments with H = 0.0893 m. In a room with H = 3.0 m
supply air velocity has to be u, = 0.455 m/s if kinematic viscosity v = 15.3-10-6 m%s at
temperature 20 C is used. The inlet conditions for the turbulent kinetic energy k and dissipa-
tion € are

ky = 1,5 (0,04 uy)* and

€&, = k"*/l,, where 1, = h/10.

For the non-isothermal case Archimedes number Ar is defined as

Ar = B g h ATJu}

where B = 1/293K, g = 9.81 m/s* and AT, is the temperature difference between the exhaust
and supply.



3. SIMULATION MODEL

A Wish code in the Cray X-MP computer has been used. The code uses the finite volume
method described by Patankar (1980). An upwind-differencing scheme is used in representing
convective transport. The high Reynolds number k-g turbulence model (Launder, Spalding,
1974) is used with model constants in Table 1. At the walls beyond the laminar sublayer, a
logarithmic wall function is used with von Karman constant 0.4 and smoothness factor E = 9.

Table 1. Diffusion and source terms in the general equation

div ( p v ¢ - Ty grad ¢ ) = S,

) T S¢
Ip -
vy H+pg "5y (P -Po) i
aXxX
i
h p/Pr+yuy/Op 0
k p+ug/og P - po€ + G
€ P+ /O C1PE/k - CoPo€%/k + C3GE/K
ovy dvj  dvy
P = pt ( + _a
an aXi Xj
Bt dp
e
h 7%y
Ht = Cppokz/e
Cp = 1,44, Cy = 1,92, Cy = 0,09, C3 = 1,44
O = 1,0, Ceg = 1,3, Oh = 0,9
NOMENCLATURE
Cp = specific heat capacity of air (1000 J/kgK)
h = enthalpy = cyt
k = kinetic energy of turbulence
p = air pressure + 2p.k/3
Pr = Prandtl number of air (0,71)
t = air temperature, ©C
Xj, x4 = tensor notation for space coordinates
vi,Vy = mean velocity in i1 and j directions
v = mean velocity vector
(0} = general variable
€ = turbulence dissipation rate
) = air density = po(1l-(t-20 ©C)/293)
Do = air density at 30 °C (1,2 kg/m3)
u = dynamic viscosity of air
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4, RESULTS OF THE ISOTHERMAL CASE

The main results can be seen in Figures 2 to 10. They have been computed with the Wish
program using a computational grid of 1170 points (= 45x26 in the x and y directions). The
grid spacing can be seen in the vector plots. The distance from the first grid point to the
surface is 10 mm at the ceiling, 15 mm at the east wall, 15 mm at the floor and 20 mm at the
west wall. The velocities have been made dimensionless by dividing by the supply velocity.
The velocity fluctuation in the x-direction has been estimated from equation

fu? = JRL1

which is based on nonisotropy of typical wall jet turbulence (Nielsen 1990).

The decay of the supply air jet is quite well predicted (Fig. 9) up to x/H = 2, where the simu-
lated velocity starts to decrease faster than the measured velocity. Recirculation in the upper
right corner is not predicted. Recirculation exists in the lower left corner but it is much weaker
than in the measurements (Fig. 10). The location of the maximum velocity near the floor is at
the same point x/H = 2.2 in computations as in the measurements but the velocity is 8 % lower
(Fig. 10). Turbulence fluctuation is fairly well predicted near the ceiling (Fig. 9) but not so

well near the floor (Fig. 10).
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Figure 2. Velocity vectors of the isothermal case.



Figure 3. Air speed contours of the isothermal case.

Figure 4. Contours of turbulent kinetic energy (m’/s’) in the isothermal case.
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Figure 5. Contours of dissipation € (m’/s’) in the isothermal case.
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Figure 6. Comparison of the computed and measured mean velocity and turbulent intensity in

the isothermal case in section x/H = 1.0.
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Figure 7. Comparison of the computed and measured mean velocity in the isothermal case in
section x/H = 2.0.
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Figure 8. Comparison of the computed and measured turbulent intensity in the isothermal case
in section x/H = 2.0.
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Figure 9. Comparison of the computed and measured mean velocity and turbulent intensity in
the isothermal case in section’y = h/2.
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4.1 Grid and differencing scheme influence

Velocity profiles at x/H = 2 have been plotted in Figure 7. Computed results with a coarser
grid (28x17 = 476 points) and the same differencing schemes as in an earlier report (Heikkinen
& Piira 1990) are also shown. The fine grid profile seems to be closer to the measured profile.
Different coarse grid profiles are close to each other, except near the walls where differences
can be seen, maybe better from Tables 2 and 3.

Table 2. Maximum velocity ulu0 in the jet near the ceiling at x/H = 2 using different grids and
differencing schemes.

Grid Grid Difference
28x17 45x26
WISH, upwind scheme 0.651 0.634 -2.6 %
FLUENT, power law scheme 0.626 0.610 2.6 %
FLUENT, QUICK scheme 0.624 0.612 -1.9 %

Table 3. Maximum velocity u/u0 near the floor at x'/H = 2 using different grids and differen-

cing schemes.

Grid Grid Difference
28x17 45x26

| WISH, upwind scheme -0.281 -0.294 4.6 %

| FLUENT, power law scheme -0.280 -0.290 3.6 %

h FLUENT, QUICK scheme -0.301 -0.288 4.3 %

Near the ceiling, Wish predicts 4 % higher velocities than Fluent with the power law scheme
but near the floor the differences are less than 2 %. The difference between power law and
QUICK near the ceiling is small, as expected, because numerical diffusion is not a problem in
the jet region. But near the floor, the QUICK scheme predicts a 7 % higher velocity than the
power law scheme when the coarse grid is used. With the fine grid, differences with all predic-
tions near the floor are small.

The fact that the biggest velocities near the floor were obtained with a coarse grid and the
QUICK scheme was also true in 3-dimensional simulations (Heikkinen & Piira, 1990). In both
2- and 3-dimensional computations the coarse grid was constructed so that logarithmic wall
function rules (y+ between 30 and 100) were not violated, see Table 4. With the fine grid the
y+ values are low and therefore the shear stress is too high, which means loss of momentum
and low velocities.
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Table 4. Mean y+ values at the first grid point near the surface with the coarse grid and the
fine grid. From Wish computations.

l[ Grid Grid
28x17 45x26
LCeiling 63 11
[ Floor 93 15
East wall 61 17
West wall 40 10

4. RESULTS OF THE NON-ISOTHERMAL TEST CASE

Predictions were repeated with different Archimedes numbers from 0.04 to 0.24 with 0.04
intervals to find the penetration depth at each Archimedes number, as suggested by Nielsen
(1990). It turned out that penetration depth is practically the same as the room length with
Archimedes numbers 0.12 or less. With Archimedes numbers 0.16 and higher, the penetration
depth is nearly zero (see Fig. 11). Penetration depths between 0 and L were not found as in
experiments (Nielsen 1990).

Other penetration depths do appear during the iteration. An example is given in Fig. 12, where
the penetration depth moves from left to right during the computation. If one looks at the
residuals of different equations (Fig. 13), one would be tempted to stop calculation after 3000
iterations, when the penetration depth is about 0.25 and the flow field is still changing. This
means that we have to be careful with convergence criteria in cases which are not very stable.
It is a good practise to look at changes of air flow patterns during the iteration. Also changes
at a good monitoring point will reveal changes in the flow field. ”
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Figure 11. Velocity vectors of the non-isothermal case when Ar = 0.16.



13

b 100 cm/s

ERN R
(SR RAL
v
DR EELL
RN
e 00

Y BR L
2 e e e o S0 RR1
PP 11t
PP (R
PP } (RR1

. (BBl

A

Al

\

)

\
N \

]
” Vit
, vt
........-——
........-a
.........:
.....,._-~
.......__:
......._-
_....._‘—a
.-......a—
......_.-—
_......_n*
_......_-_
......._a-
_-......——
_—.....—~—
_.......:
-—-...-—w
._....._:
........:
.-_....~:
NN |
—«.o:..s~»
AR YR Y
LN

100 CM/S

f

==
padiindiibg
PN
- n
- s N
FOERN
[EERY
R
Y
C
R
R
R
I )
NS
]
I
T
TR
e
R
. . 1]
]
T
. . Al
e
Lo
. . L
- . 1
PP}
C e
P
<« - .
-~ = -
I,///,IIQ\ 7))
7////”““““\(.\\
- . . =
S SRy

100 CM/S

1

~

-t

~ -

100 CM/S

f

T E F E = Y -r—-
SRR

e e = = s s
J N R R 2
O R A )
PR Y sttt
PN |

N R AL
B AL
P L
(PP P et e e e w2 F

(L R

11277 o o o

S=ONONNANNW

NS e e e e -

Q\\\\\l/////:
s\\\\\cl//z—:
n~\s\-z/,::
—-s..'a¢n:—
SRR
_~...,.—::
—n__...—n——:
:-.....“::
-—_....~::
q__....._::
R
R IT)]
Miv .ot
R
ﬁﬁ_n_....———:
ﬁ—_....~.__—:
:__......::
nn—_‘os--~—h
_:...--~::
[ ﬂ——aonl\\»--
:—‘/rll\\\s~:
.u://II.ll\ ity
;allll'loo\\\\\s=

=====zzz2y
> aud auet sl sl sl @il ol oF & &

-

! 100 cm/s

2000, 3000, 4000 and

b

umbers 500 (upper figure)

Figure 12. Air flow patterns at iteration n

6000 (lower figure), Ar = 0.08. The residuals are shown in Figure 13.
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2d case, Ar = 0.08
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Figure 13. The residuals of u, v, p, k, € and h in the non-isothermal case when Ar = 0,08.
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Figure 14. Comparison of the computed and measured temperature in the non-isothermal case
in section y/H = 0.75 with a very low Archimedes number.
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CONCLUSIONS

In the isothermal case the air flow patterns in the computations and in the measurements were
very similar. However, recirculation areas near the corners were not well predicted.

Computations with a fine grid very close to the walls and therefore violating the rules of
logarithmic wall functions gave the best general agreement with the measurements. However,
a computation with a coarser grid and numerically more accurate method (QUICK differencing
scheme) gave the best maximum velocity prediction near the floor. This velocity was still 6 %
lower than the measured velocity. The grid and dlfferencmg scheme effects were similar to
those in earlier three-dimensional computations.

In the non-isothermal case the penetration depth could not be predicted. One should be careful
in simulating air flow patterns which are not clearly stable.
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