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Abstract
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Flow in air conditioned rooms is

examined by means of model experiments.
The different geometries giving unsteady,
steady three-dimensional and steady two-
dimensional flow are determined. Velocity
ﬁrofiles and temperature profiles are
measured in some of the geometries.

A numerical solution of the flow equa-
tions is demonstrated and the flow in

air conditioned rooms in case of steady
two-dimensional flow is predicted. Compari-
son with measured results is shown in

the case of small Archimedes numbers, and
predictions are shown at high Archimedes

numbers.

A numerical prediction of flow and heat

transfer in cavities is also shown.
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List of symbols.

a
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Control surface at supply opening
Archimedes number

Control surface at supply opening
Constant in turbulence model
Constant in turbulence model
Specific heat

Constant in turbulence ﬁodel

Coefficients in difference equation

Surface element

Source term in difference equation
Constant in equation for wall jet

Constant in equation for wall jet

Constant in equation for wall jet

Mean signal from anemometer

Fluctuating part of signal from anemometer
Gravitational acceleration

Grashof number

Grashof number in case of convective heat transfer
in a cavity

Height of supply opening,

Height of room, model or cavity

Turbulent kinetic energy

Constant in equation for anemometer signal

Constant in equation for effective cooling velocity

Constant in equation for effective cooling velocity
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Constant in equation for wall jet
Constant in equation for wall jet
Turbulent length scale
Penetration depth
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Scale

Outward normal to surface
Distance from a surface

Pressure

Prandtl number

Heat flux

Coefficient in equation for wall jet
Rayleigh number

Reynolds number

Turbulent Reynolds number
Residual

Time

Temperature

Supply temperature

Temperature of surface element dA
Max. or min. temperature of wall jet
Mean radient temperature

Surface temperature

Mean temperature along surface b
Height of return opening

Velocity vector

Effective cooling wvelocity
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Supply velocity

Maximum wvelocity in wall jet
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Distance
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supply 0peﬁing

room, model or cavity

from supply opening to virtual origin of jet
from surface 'a' to supply opening

from wall to supply opening

from ceiling to supply opening

Coordinate

Coefficient in equation for wall jet

Abgorptivity

Relaxation parameter

Volume expansion coefficient

Thickness of thermal boundary layer in wall jet

Thickness of boundary layer in wall jet

Positive

temperature difference between supply

and return,or between hot and cold surface in

a cavity

Emissivity

Digsipation

Coordinate in wall Jjet

Heat transfer coefficient

Thermal conductivity

Molecular viscosity

Turbulent viscosity

Dengity

Stefan-Boltzmann constant

Turbulent Prandtl number

Constant
Constant

Variable
w,$, T,k

in turbulence model
in turbulence model

in the difference equation répresenting
or € respectively




Pg| Slip value for k T, v, or Vg
) Stream function
wrn Maximum value of stream function

w Vorticity

The following indices are used for turbulent variables:
A Instantaneous value

: Instantaneous deviation from mean wvalue

Variables without one of these indices are mean values,

for example

V. = v.oev!
Vi =ity

The symbol'barfdesignates mean value in connection with .

correlations, for example

i
[ [] i

V1 V2

Dimensionless variables are denoted by % , for example

x*

=i|
i h

t( ) is a symbol for a function.

T = f(xj,t)‘

means for example that the instantaneous temperature is a
function of the coordinates Xj and the time ft.



1. Introduction.

One of the aims of an air conditioning system is to produce
optimal conditions fer the occupants of a room. This cannot
be achieved simply by supplying a given amount of fresh air
and by adding or removing heat to maintain a comfortable
temperature level. It is also necessary to generalbe homoge-
neons thermal conditions everywhere in the occupied zZone.

Thermal conditions, that is to say distribution of velocities
and temperatures, are governed by many parameters, some of
which are the distribution of heat sources, the dimensions of.
the room, air change, and the location and dimensions of the
diffuser. It is the purpose of the present investigation to
predict the combined influence of these parameters.

This investigation is made by means of a small-scale modelling
technigue and by numerical solution of the flow equations. The
small-scale modelling technique is dealt with in ﬁart 2 and-
the numerical prediction of the flow in part 3.. The twe parts
may be read independently, and it should be noted that the
results in @art 2 are general while those in part 3 apply in
cagses where the flow in the main part of the room is two-
dimensional.

Part 4 gives a short description of the numerical prediction
of convective heat transfer in cavities.




2. Model experiments.

Small-scale modelling techniques are used for many types of
flow investigations. A variety of reasons can be named for
making tests with models instead of making them in full-scale,
but in heating and ventilation research their appeal lies
first and foremost in the advantages of working with smaller
dimensions and smaller systems. In the following, for example,
experiments are made with flow in a model which simulates
room lengths of lo-20 m — an experiment which can be difficult
to make in full-scale rooms owing to the space required. Small
size models can also be made with a very flexible geometry,

as is the case here, where experiments are made with about

25 different geometrical variations of the model. It is a
primary purpose of these model experiments to obtain qualita-
tive knowledge of the air distribution which takes place in
rooms of different dimensions, i.e. whether the flow is steady
or unsteady, two-dimensional or three-dimensional. The diffu-
sers and room dimensions which give steady two-dimensional
flow in the main body of the room are of special interest
because we shall later demonstrate a calculation procedure
capable of predicting the flow in these situations.

The model experiments must also yield quantitative data such
as velocity profiles and temperature profiles. These data and
results from other references will be used to check the

solution procedure.

The following paragraphs on model experiments begin with the
development of the governing laws, i.e. the theory of similarity.
Particular attention should be given to the paragraph which
demonstrates the influence of thermal radiation in model experi-
ments, paragraph 2.2.2. This is followed by the paragraphs
dealing with the actual model experiments, of which paragraph
2.3 is the first. If the reader is acquainted with the complex

of problems surrounding the theory of similarity or does not
wish to study the subject he would do well to begin.reading

at paragraph 2.3. '




2.1. The basic equations

A set of basic equétions is of interest for many reasons. With
such a. set of equations it is possible to describe the laws
governing model experiments, and such systems also form the
basis of the numerical method for prediction of flow distri-
bution in a room, which is described later.

In the following we shall consider the flow in a cartesian
coordinate system with thecoordinatesxi, X0 X5. The basic
equations describing the flow are the equation of continuity,
the equations of motion and the equation of energy. The
equations are given in detail in, for example, the reference

[1] .

If we assume that the flow is incompressible the equation
of continuity will be

8V _ ¢ | | (2.1-1)

where % is the instantaneous velocity in direction X A1l
equations are written in abbreviated form according to the
summation convention, where the subscript i takes the values
1, 2 and 3. In a case iike‘this where the samé subscript is
repeated a summation over | 1is implied.

The - equations of motion - also called the Navier Stokes
equations -~ describe the balance of the forces in the three
coordinate directions. If we assume that the flow is
incompressible, the three equations of motion will be




p is the density and p the molecular viscosity. The instanta-

neous pressure is p and the gravitational acceleration is g; -

The subscript i takes the values 1, 2, and 3 and describes
three equations in three directions, and the subscript j 1is
summed up in the single equations. The density p and viscosity
gL are, in principle, functions of the instantaneous tempera-
ture T. With the temperature differences that occur in
practice this effect can be ignored except for the gravita-
tional tEIﬂlng see for example Rubel and Landis[ﬁo] . This
assumption is called the Boussinesq approximation.

The dependence of density on temperature is expressed by ah
equation of state.

P=Po-pPoB(T-Ty) - (2.2-3)

where po and TO are reference values and B is the coefficient

of thermal expansion.

If we apply the Boussinesq approximation and equation (2.1-3)
to the equations (2.1-2) we get

(2.1-4)

assuming that the hydrostatic term Pog; is ignored.
Po{39i(T-To) is the wvariation in the gravity as a
function of the temperature, that is to say buoyancy.
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The last equation in theset of basic equations is the energy
equation,"which expresses the energy conservation at a point.
Energy is, in principle, the sum of internal energy, kinetic
energy and potential energy. However, the last two can be
ignored in our appiicétidn. In a later chapter we will use an
equation for thét part of the kinetic energy which isconnec-
ted with the turbulent eddies; not because they contain
significant amounts of energy but because the transport of
turbulent kinetic energy is important in connection with the

description of fturbulence.

The velocities are so low that we may consider the flow
incompressible and ignore the energy produced by friction,
vigcous digsipation, and thus the energy equation remains

FD

o I’y
. v.ﬂ) =5 o7 - (2.1-5)
t ] xj axjaxj

w

oo

Specific heat Cp and thermal conductivity A are assumed to

be uniform according to the Boussinesg approximation.

We have now‘éet up a system of equations which gives a complete .
description of the flow in an area. It consists of the

equation of continuity (2.1-1), three equations of motion

(2.1-4) and the energy equation (2.1-5), and contains the five
unknowns 91, 02 , 03 , P and T.

It must be emphasized that the variables referred to are instanta{
neous velocity, pressure and temperature, and that in derivation :
of the equations nothing has been said about the type of

flow. Theset of equationg describes every situation, regard-

less of whether it is steady, unsteady, turbulent or laminar.



A system consisting of differential equations is fully descri-
bed when the boundary conditions, i.e. the values along the
boundary of the area of integration, are known. The boundary
conditions for the velocity are, in a diffuser, a velocity
profile of the type

V. = f(xj,t) - (2.1-6)

The boundary conditions for the velocity on a surface are

V.. =0 (2.2.=7)

The boundary conditions for the temperature are, in a diffuser
and along surfaces, of the type

T =f(xj,t) (2.1-8)

The &ifferential equations may have gradients as boundary
conditions at some parts of the boundary. For example, a
return opening may be described as follows

3vy _ ¢ (2.1-9)
8x1

8T _ o (2.1-10)
aX1 :

where vy and T are mean values, assuming flow parallel
to the walls in the return opening.
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The temperature at a surface may have a boundary condition
of the type

ai*)
=1 = const. (2.1-11)
(an n=0 ) s

where n is normal for the surface ,and the heat flow to or from

the surface is constant. The description of boundary conditions

will be more complicated when thermal radiation is involved.
This guestion will be dealt with in paragraph 2.2.2.

2.2. Principle of gimilarity.

2.2.1. Dimengionless equations

We sghall demonstrate how it is possible, by means of dimension-~
less equations to evaluate rules which have to be observed
when making a model experiment.

The following parameters are selected in order to characterize
the situation in an air conditioned room: Diffuser velocity
VO, height of diffuser h, supply temperature TO, and the
positive temperature difference'between supply and return

ATO.

It should be'noticed that the height of the room H or its
hydraulic diameter may be used as a reference length in
other papers on the subject.

The set of basic equations is made dimensionless by introducing
the dimensionless variables

xf* = %i ' (2.2.1-1)
]




o* =Y (2.2.1-2)

p* - _P (2.2.1-3)
t* - LY (2.2.1-4)

s . 1-Tg (2.2.1-5)

These variables are introduced in the equations (2.1-1),
(2.1-4) and (2.1-5), and we will thus get the following
equations.

o ¥
Eli _ 0 (2.2.1~6)

*7 BoVoh axFaxit - (2217

(2.2.1-8) .
* * .
CpPoVoh axjaxj |
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It will be seen that the solution of the set of equations
is dependent on some dimensionless numbers comprising physi-
cal constants of the fluid, and reference values of .the
probiem.

Ar - B92hAT (2.2.1-9)
v2
L Fo (2.2.1-10)

Re Po Vo N

—_— = — 2.2.1-11

where Ar is the Archimedes number, Re is the Reynolds number,
and Pr is the Prandtl number. It is assumed that the
gravity acts in the positive direction of the xgraxis.

The use of the Archimedes number is common in air conditioning
references, while in fluid dynamics it is often written as.

Gr

— (2.2.1-12)
Re 2

Ar =

~where Gr is the Grashof number.

By means of fig. 2.2.1-1 we can now specify the conditions
to be fulfilled when a model experiment is to be made.. The
figure shows a section of a room and a section of a geometri-
cally gimilar model.
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Fig. 2.2.1-1. Section of a room and section of
a geometrically similar model. The reference
variables are shown on the figure.
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The basic flow equations of the form (2.1-1), (2.1-4), and
(2.1-5) as well as the boundary conditions (2.1-6) to (2.1-10) -
are set up for room and model respectively. After this, we
make the twosets of equations and the boundary conditions
dimensionless by introducing the variables (2.2.1-1) to
(2.2.1-5) into the equations. These variables contain reference
velues from the full gize room and from the model respectively.
For example, the velocity in a room is described dimensionless
by dividing with the diffuser velocity in the room, and the
velocity in the model is described dimensionless by dividing
with the supply velocity in the model. '

The twosets of equations will now have the form (2.2.1-6),
(2.2.1-7) and (2.2.1-8), and it will be seen that they are
identical and thus describe the same solution, provided that:

1. the dimensionless boundary conditions, including
geometry, are identical

2. the dimensionless numbers in the equations (2.2.1-9),

(2.2.1-10) and (2.2.1-11) are identical, i.e. the
Archimedes number, the Reynolds number and the Prandtl
number are the same for room and model.

2.2.2., Heat flow at surfaces.

Item 1 of the principle of simiiafity requires that boundary

conditions for the temperature must be indentical in room and

model. How, then is it possible to establish the correct
boundary conditions in a model ?

The influence of a surface can in certain situations be de-
scribed thus: The surface has a given temperature or tempera-
ture distributioﬁ, as is the case, for example, with heat
loss through a window if the outdoor temperature is low.

The boundary condition is of the type (2.1-8), and it is easy
to establish. If the dimensionless. surface temperature in a
room is known according to equation (2.2.1-5), the surface




- 12 -

temperature in the model is determined so that it gives the
same dimensionless temperature. Thermal radiation between
surfaces will not affect the model test, if all surfaces are
kept at given temperatures, i.e. boundary conditions of the
type (2.1-8).

However, the boundary conditions for the temperature are
‘generally more complicated. Distribution of the surface tempe-
rature is dependent on radiation between the different sur—
faces, and it is dependent on the local heat flow to or

from the surface and also on the local coefficient of heat
transfer. This we will examine by setting up an equation for
the heatbalance for a surface element dA. This equation is
rendered dimensionless in the same way as previous equations,
énd the dimensionless numbers thus obtained, are evaluated.

When forming the heat balance equation it is reasonable %o
ignore the heat capacity owing to the large time constant of
the surface material in relation to the turbulent eddies.
Situations where the time dependent changes of temperature

are so great that the time constant of the buillding structures
ig significant - for example daily variation of sun gain and
outdoor temperature - are not included in this analysis
because in practice model experiments are only made for
steady conditions.

Fig. 2.2.2-1 shows the surface element dA with the normal n.
The surface element is exposed to radiation from the surroun-
ding body with the instantaneous mean radiant temperatureﬁ“s,

and the heat flow to the surface element is qdA.

The heat balance per unit area of the surface element is

‘+ EUTdA ’(2.2.2-—1)
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Fig. 2.2.2-1. Surface element and surroundings.
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The first term in the equation is the thermal radiation received
from the surroundings, while the second term is the heat flow

to the surface. The first term on the right hand side is the
conductive heat flow and the second term is the thermal
radiation emitted from the surface. The thermal radiation is
written as a product of the absorptivity a or the emissivity

€ multiplied by the Stefan-Boltzmann's constant @ and by

the mean radiant temperature Tms to the fourth power or the

instantaneous temperature TdA of the surface element to the fourth
power respectively.

The absorptivity a and the emissivity € are in practice identi-
cal, because the received and emitted radiation is of the same
wavelength distribution, 3.5 -~ 40 pm. Short wave sun radlatlon
is ignored. Equation (2.2.2-1) can thus be written

q = -A (-g—t) + EO(TéA - Trl,;s) (2.2.2-2)
n n=0

When temperature differences are moderate we can linearize the

term»(fék..fﬁgs) and make the equation dimensionless by means
of formulas (2.2.1-1) and (2.2.1-5).

o)
ATo A an*/l %_o
LeoT3Hh (f -
— RQ_ dA‘Trns) (2.2.2-3)
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Equation (2.2.2-3) contains two dimensionless numbers which
must be identical for a surface element in a room and for a
surface element placed in a similar position in a model.

We will first discuss the Situation where radiation to and
from the surface is negligible. This is the case when the air
passing the surface has a high velocity or when the emissivity
of the surface is small. Equation (2.2.2-3) now expresses

that the dimensionless temperature gradient at the surface is
equal to

gh
ATg A

(2.2.2-4)

The condition that the same dimensionliess temperature gradient
should be present in room and model is now fulfilled by _
distributing the heat flux g in the model according to (2.2.2—4)J
in such a way that this number is identical in room and |
model at the same locations.

Let us now discuss the case where radiation is significant.
The number

450T3h

(2.2.2-5)
A

must be identical in room and model. The emissivity is 0.9
for common surfaces in a room by longwave thermal radiation.
It is therefore not possible to raise this coefficient consi-
derably in the model. TO measured in Kelvin, is of the same
magnitude in room and model.

We now see that it is not possible to make the dimensionless

number (2.2.2-5) identical in room and model if we are working
with air in the model.
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The number will, in the model, be smaller according to the
geometrical relation between model and room. This means that
it is not possible when making model experiments with air to
reproduce the influence of radiation in a roon.

If the model experiment is made with water the influence of
radiation has to be ignored, because water is opaque to long-
wave thermal radiation.

When a model experiment is to be made in a situation where
radiation is significant the only possibility in practice is
to give the model a dimensionless temperature distribution
which accords with the distribution which can be foreseen in
a room under the combined influence of radiation, convection

and conduction to and from the surfaces.

2.2.%. Practical use of the similarity principle.

- In this paragraph we shall examine some examples of the use
of the similarity principle and show how we can, in certain

situations, reduce the reguirements.

First let us consider the situation where the velocities in

a room are high and the temperature differences are small. The
forced convection is dominant compared with the free convection.
This corresponds to the situation that the buoyancy terms

in the eguations (2.1-4) are becomming small compared to

the other terms. We can in this situation ignore the buoyancy
and the Archimedes number will not appear in the dimensionless
equations. It_is not important to the model experiment.

In the following example we assume that the Archimedes

number is of a size such that the bucyancy shall be taken into
consideration. We also assume that full consideration is

given to the similarity principle, i.e. the following three
dimensionless numbers must be identical in the room and in the

model
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Pr HoCp (2.2.%-1)

n

Re = V_°E-?_2_ C(2.2.3-2)
) Q

Bgzh AT,

Ar = (2.2.5-—5)

The model experiment‘is made in air, so in this way the same

Prandtl number is secured in room and model.

The factor by which the room is bigger than the model is
@élled M, which means that the model is manufactured in the
scale 1/M. The requirement that the same Reynolds number _
shall apply in room and model means that the velocity in the
model increases with the factor MM, because the height of the
supply opening h is M times as small. The supply opening in
the model is M times as small and the square of the supply
velocity is Mo times as big as in the room. Therefore the
Archimedes number requires that’ AT  in the model shall be
M5 times as big as in the room. We see that the temperatures
in the model will reach very high valuesgs if the scale 1/M is
to be reduced significantly.

If the model experiment is only to predict the general stream
line pattern, which is mainly governed by free turbulence, it )
is possible to ignore the Reynolds number and the Prandtl number.
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This. simplification is possible because the structure of the tur-
bulence at a sufficiently high level of wvelocity will be

similar at different supply velocities and therefore inde-
pendent of the Reynolds number. Likewise the transport of
thermal energy by turbulent eddies will dominéte the mole~

cular diffusion and will therefore be independent of the

Prandtl number.

Turbulent free jets and wall jets are examples of flows which
can be similar at different Reynolds numbers and Pranditl
numbers, see Schwarz and Cosart [32] and Schmidt [31].
Millejans [25] has also shown how the general stream line
pattern in a series of model tests was similar at different
Reynolds numbers .and only dependent on buoyancy and, with it,
the Archimedes number.

There is a big advantage to be gained in ignoring the Reynolds
number. In the example it was shown that the temperature
difference in the model was M5 times greater than in the room.-
If we ignore the Reynolds number it is possible to lower the
velocity 1n the model to z value at which the flow is still
suitably turbulent. The lower velocity will give a smaller
denominator in the Archimedes number (2.2.%-3) and therefore
also a lower temperature difference ATB in the medel. However,
it is not possible to ignore the Reynolds number or Prandtl
humber if it is the heat transfer from the surface which

is to be studied in the model experiment. The viscosity and
molecular diffusion will always be important close to s
surface

When a model experiment is made with water as fluid it is
necessary to ignore the Prandtl number, because water at
normal temperature and pressure has a Prandtl number which
is lo times greater than the Prandtl number for air.
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2.%. Test set up.

This paragraph deals with the construction of a model and the
necessary measuring equipment. The model works with air as
experimental fluid and it has given the results discussed 1n
paragraphs 2.4,and 2.5.

Fig. 2.3-1 shows a sketch of model and measuring equipment.

The model (1) comprises a box with a length of 1.80 m, a
widthof 0,60 m and a height of o0.60 m, It is made of wooden
frames, of which the bottom and both ends are coated with

hard masonite and insulated with polystyrole. The side walls
are double glazed, and the top of the model is of plexiglass
with loose insulation in sections. By means of a light box (2)
a beam of light can be applied at different places in the
model snd the stream line pattern in the model can be observed.

Adir is sucked in through the box (3) and the nozzle (4). The
‘nozzle ends in a supply opening (5), which is aligned with
the top of the model and has a height of 7.2 mm. The inlet
opening follows the whole width of the model and ig divided
up into 5 sections. They can be closed independently if it is
wished to examine the flow in situations where the inlet ope-
ning only covers part of the width of the model.

The air leaves the model via a return opening (6) and is led
to the blowers (7), By placing the blowers after the model,
the risk of upsetting the measurements in the model by heat
emitted from the blowers is avoided.

Tnside the model is fitted an extra floor section (9) and an

end wall (lo). We can thus examine various geometrical situationé

by varying the length and the heigth of this sub-model, and
the width can be varied by placing a couple of plexiglass
walls parallel with the side walls.
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The model is designed for three types of experiments:
1. Measurement of stream 1iné pattern

2. Measurement of a vertical wvelocity and
turbulence profile

3. Measurement of temperature distribution.

The stream line pattern is measured by introducing light

weight particles to the air, which are illuminated and photo~
graphed or filmed. The particles used are metaldehyde particles.
These particles have a very big and crystal-like strﬁcture,
which gives them high drag in proportion to their weight. The
gsettling speed of the particles is so low that it is negligible
even in experiments at very low velocities such as full scale
experiments with free convection, see Daws et al.[6] .

The particles are formed by heating metaldehyde*) on a hot
surface, in this case a soldering iron (11). When metaldehyde
is heated a poisonous gas is produced and therefore the model
is equipped with a box (3) so that all gas is led through the
model and out into the free air (8).

The particles are illuminated in a section by means of a looco W
halogen lamp (2) and are photographed or filmed through the
side wall. By taking pictures with different exposure times

it is possible to determine the stream line pattern and also
make a qualitative evaluation of the mean velocity and turbu-
lence.

The supply velocity is determined by measuring the pressure
drop across the nozzle (4) by means of a micromanometer (12).
The nozzle (4) has a contraction of 20:1 and its shape is
determined according to a method described by Libby

and Reiss [18] .

*) META, Tonza A.G., Basel
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Test measurements show that in practice the nozzle gives

a friction free flow and it therefore creates an almost rect-
angular velocity profile in the supply opening. This velocity
profile is a welldefined boundary condition for a model

experiment and it is easy to repeat in other tests.

The vertical velocity profile in the model is measured with
a DISA CTA-anemometer type 55D01 (13) and (14). The signal
is linearized with a DISA linearizer type 55D10 and the mean

value as well as the root-mean-square value is measured.

The anemometer is calibrated befofe and after a set of measure-
ments in a known, uniform velocity core from a free jet. This
free jet has the same temperature as the air in the model.

A DISA CTA-snemometer type 55K01 is used in some new measure-—

ments made in 1976.

For temperature experiments heat is supplied along the bottom
of the model. The heat is generated by an ESWA electric
heating film which is mounted on the surface (9) and is
supplied via a variable transformer. Surface temperatures

and the temperatures in the flow are measured by 0.2 mm copper—
constantan thermocouples (15), and the temperatures are
recorded on a pen recorder (16).

2.4. Isothermal model experiments.

2.4.1. Parameters of the model experiments.

A model experiment in gir with isothermal flow is fully
characterized by the Reynolds number and by the geometry of
the model, see paragraph 2.2.3. The geometry for all the
experiments made, can be expressed by the dimensions given

on fig. 2.4.1~1. H is the height of the model, L is its length
or depth, and W is its width. h is the height of the supply
opening and w is the width. u is the height of the return

copening.
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All the geometrical parameters are expressed in the following
dimensionless ratios

h/H, L/H, W/H, u/H and w/W

Fig, 2.4.1-1 also shows the location of the coordinate axis.
The coordinate system is placed with its centre in the upper
left corner of the model, and all distances in the model are
expressed in the dimensionless coordinates

xl/H, X2/H and XB/W.

2.4.2. Flow in models with big depths.

This paragraph examines the results of a series of tests in
which the depth L/H of the model is so great that the flow
is not influenced by the end wall.

The results simulate a deep room and, of course, also rooms
where the "effective" value of L/H is high. This may be the
case in, for example, a storage room filled with goods and
consequently having a small "effective" height H.

A jet will have a limited penetration into the model. Entrain-
ment in the jet means that air must be led back along the
bottom of the model and at a given distence this air will
disperse or deflect the jet.

We define the penetfation 1re as the distance from the wall
with the supply opening to the point in the bottom of the
model where the stream lines diverge :— reattachment point,
see fig. 2.4.2-1 at the top. The penetration lre must not
be confused with the throw. The throw is, in the case of
isothermal flow, a variable describing the velocities in a
room, and it ig defined as the length from the diffuser to
a2 point with a given velocity (e.g. 25 cm/s) in a wall jet
or free jet. '

H
1




H

]

Section B-B

Fig. 2.4.2-1. Flow in model with big depth.
The upper picture shows the result for the

pressure tight setup and the lower picture shows

the result for the setup where the side walls are

as high as the lower edge of the nozzle. h/H = 0.056,
w/W = 1.0, W/H = 1.0 and Re = 470c0.
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At distances from the supply opening which are greater than
the penetration the velocity is very low, since the injected
air is distributed over the whole area, while at distances
which are less than the penetration the velocities are very
high, because big volumes of air are set in motion by the

injected jet. The penetration is therefore an important
parameter in the discussion of room air distribution.

Fig. 2.4.2-1 shows the two different setups resulting in two
different penetration depths. They both have the following:

dimensions
h/E = 0.056
w/W = 1.0
W/H = 1.0

In the upper setup the side walls are made in such a way that
they form a pressure-tight seal against the floor and ceiling.
The side walls are alsoc extended into the nozzle itself by
means of two spacers, see point (1) on the figure.

The experiments show a penetration depth of lre/H ~ 4,5,
independent of the Reynolds number from Re = 4700 to Re = Q4oo.

In the lower setup on fig. 2.4.2-1 the side walls are as high
as the lower edge of the nozzle. In this instance the experi-
ments show that the penetration depth will be lre/H ~ 3,4 at
Reynolds numbers from 2900 to 93%co0. It will thus be seen that
the penetration depth is greatly dependent on minox details
in the construction of the model, and the latter result cannot
be regarded as characteristic of a closed roomn.

Urbach [54] has with the aid of smoke visualization found a
penetration at about 3.0 for values of h/H between o.l and

c.02 and Reynolds numbers between %500 and 1l2ooo. The width

of the model was W/H = 1l.o0.
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Katz [l&} has measured the penetration depth in models built

up in an open water channel. He has found the penetration

depth lre/H between 3 and 4.5. His experiments show that the
penetration depth is to some extent dependent on the location
of the end wall. He explains this as a tendency of the water to
form circular movements between the end wall and the point of
reattachment so that this distance becomes a multiple of H.

The models used for the experiments had a small width W/H.

It will be seen that there is some difference between the
penetration depth in the various experiments referred to.
This is probably due to the influence of the supply opening
itself and the contraction formed before this opening.

A completely new situation arises when we extend the width
W/H of the model. On fig. 2.4.2-2 the geometry is specified
as follows

h/H = 0.056
w/W = 1.0
W/H = 4,7

The two pictures on the figure show two instantaneous situations
of the flow which occur. From the top picture we see that the
illuminated part of the jet penetrates deep into the model. :
The Jet entrains air from part of the jet outside the illuminated?
area, l.e. there occurs a instantaneous flow in the X5 direction.i
A moment later it is the jet under the light opening which
deflects in the direction of the Xz axis, entrained by the jet
beside it, as is evident from the bottom picture. Unsteady

flow conditions are in evidence throughout the examined

velocity ranges from Reynolds number 2000 to loooco.

The tests were repeated with a supply opening having an h/H
dimension of 0.025. This did not bring about any change in
the flow, which remained unsteady throughout the examined
velocity ranges.
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Fig. 2.4.2-2. Unsteady flow in a model of great '
depth. h/H = 0.056, w/W = 1.0, W/H = 4.7 and .
Re = 98o00. '
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The big width of the model makes unsteady flow possible and
must therefore be considered an important parameter. No
systematic determination of the influence of the width has
been carried out, though it has been observed that with =z
width of W/H = 3 the flow is still unsteady.

The different forms of flow occuring in fig. 2.4.2-1 and in
fig. 2.4.2-2 as the result of wvarying widths show that care
must be displayed when making model tests or full scale tests
which only represent a part of fhe room. As we have seen,

it cannot be concluded that two-dimensional boundary condi-
tions give two-dimensional flow. Later we shall see that
boundary conditions that are symmetrical to a plane

do not necessarily give a symmetrical flow.

Forthmann [9] has measured the velocity profiles in a deep
model having the dimensions h/H = 0.17 and W/H = 3.6. He has
apparently mnot observed any unsteady flow. He has calculated
the stream line distribution on the basis of the measured
velocity profiles and finds a penetration depth lre/H of 5.3.

In the next series of tests the width W/H is still 4.7 but

an attempt has been made to damp the unsteady flow by

means of longitudinal fins placed in the main flow direction
having the height H/2. At the top of fig. 2.4.2-% can be seen
a sectional view in the directionlof the *3 axis showing.the
location of the fins. The flow will be partly two-dimensional
because the injected Jet is not disturbed by the side walls
and because transverse unsteady flow is prevented by the fins.

Fig. 2.4.2-% shows the gtream line pattern at three different
Reynolds numbers. An examination of photos shows that the ave-
rage penetration lre/H is 4.0 to 4.5 for h/H = 0.056 and that
the flow oscillates somewhat in the area of the reattachment
point. The penetration is independent of Reynolds numbers in
the range examined from 24c0 to 93oo0.
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Re = 6300
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Fig. 2.4.2-3. Flow in model with great depth and
longitudinal fins. h/H = 0.056, w/W = 1.0 and
W/H = 4.7.
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The last series of tests with a deep model concerns cases
where the width of the supply opening is only part of the
width of the model. The geometry is specified by the following

dimensions
h/H = 0.025
w/W = 0.2
W/H = 4.7

At the top of fig. 2.4.2-4 will be seen a drawing of the flow

which now occurs. The drawing shows the model from above.

The injected air will after some distance stick to one side of
- the model owing to the Coanda-~effect. With this deflection of

the jet the vertical velocity gradient in the first part

of the jet will be deflected onto a horizontal plane deeper

in the model. This effect has two consequences of practical

importance to room air distribution: Firstly, the primary jet

will reach the bottom and therefore give rise to a rather high
velocity in the area corresponding to the occupation zone.
Seéondly, the air which is entrained with the injected jet
will return on the 0pposife side of the model, thus creating

a quite rapid rotating movement below the supply opening.

This flow is represented by the dotted line on fig. 2.4.2-4,
end it runs in what corresponds to the occupied zone in a

rocm.

At the start of a test the injected jet may tend to stick to
either side, but once the flow is established it is completely

steady and similar at the different Reynolds numbers throughout
the examined velocity range from Re = 2000 to Re = 4800.

The two photos on fig. 2.4.2~4 show the stream line picture
at two different Reynolds numbers. The horizontal rotating
motion below the supply opening is clearly marked by
particles of metaldehyde accumulated in this area.

The example demonstrates that boundary conditions which are

plane symmetrically do not always result in a symmetrical
flow.
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Re = 4400

Fig. 2.4.2-4. Flow in model with big depth and
small width of supply opening. _h/H = 0.025, '
W/w - 0;.2 al’ld W/H - 4.’7- '




¢« For L/H = 2.0 the flow is still two-dimensional throughout,
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2.4.3. Flow in models with width W/H = 4.7 and
different depths.

In this paragraph we shall examine a series of tests in which
the depth has influence on the flow. The object is to limit
those dimensions of the model which, qualitatively, give two-
dimensional flow. All of the tests are based on the geometry
shown on fig. 2.4.2-2,except that an end wall has been :
introduced. The geometry is specified by the followingjparameters¥

h/H = 0.056
w/W = 1.0
W/H = 4.7

and by the location of the end wall L/H which lies between
6.0 and 2.0. The height of the return opening u/H is 0.16.

Fig. 2.4.%3-1 and fig. 2.4.3-2 show that the original unsteady
flow in wide deep rooms is still present with lengths of
respectively I/H = 6.0 and L/H = 5.0.

On fig. 2.4.%-3 we see three typical photos of the flow for
L/H = 4.0. There still occurs a weak oscillation of the stream
line pattern on the right side of the model, but in practice,
however, we may consider the flow as steady in the main part
of the model. Visual obgervation of the flow shows that it

is two-dimensional in this area. The penetration lre/H ranges
from 3.7 to 3%.8.

Fig. 2.4.3-4 shows a single photo of the stream line pattern
for L/BE = 3,0. The flow is steady and two-dimensional both
in the area of high velocity on the lower right side of the
model and in the area of very low velocity on the lower left
side of the model.

see fig. 2.4.3-5.
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Fig. 2.4.3-1. Unsteady flow in model with length
I/H = 6.0 and big width. h/H = o0.056, w/W = 1.0,
W/H = 4.7, uw/H = 0.16 and Re 7000.

I

It

Fig. 2./.%-2. Unsteady flow in model with length | .
"L/E - 5.0 and big width. h/H = 0.056, w/W = l.o,
W/E = 4.7, u/H = 0.16 and Re 7000.

it
1]




Fig. 2.4.%-3. Flow in model with length L/H = 4.0
and big width. h/H = 0.056, w/W = l.o, W/H = 4.7,
u/H = 0.16 and Re = 6600.

Fig. 2.4.%3~4. Flow in model with length I/H = 3.0
and big width. h/H = 0.056, w/W = 1.0, W/H = 4.7
u/H = 0.16 and Re = Yooo0.
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Re =2100

Re = 7000

Fig. 2.4.%5-5. Flow in model with length
L/H = 2.0 and big width. h/H = 0.056, w/W
W/H = 4.7 and u/H = 0.16.
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Tn the experiments discussed in this section, the supply opening ;
has had a width equal to the width of the model, i.e. w/W |
ig l.0. In practice, the supply openings will often comprise
aline of diffusers distributed across the width of the room.

If these diffusers are placed at short distances from each
other, the jets will, at a certain depth of the room, form

a single, two-dimensional, wall jet. This means that the
results also apply in this instance, provided that the

line of single diffusers is replaced by one equivalent diffuser
with w/W = 1.0, see section 3.3.1.

To exemplify what happens when there is a great distance
between the diffusers, we shall examine a situation where
there is only a single supply opening of the size w/W = 0.2
and h/H = 0.025. The length of the model is 3.0 and the
width is #.7. The height of the return opening u/H is o.l6.

Fig. 2.4.3-6 shows a drawing of the flow conditions in the
model as seen from above. The jet below the top of the model
is a two-dimensional wall Jet. When the jet reaches the end
wall it is dispersed over an angle of 180° and acquires a
character similar to that of a radial wall jet, where the
decrease in velocity along the jet will be far greater than
in the two-dimensional wall Jjet. The upper part of the radial
jet from the end wall reaches the side walls and runs back
and down these sides. This is indicated by a solid line on
fig. 2.4.3-6. The bottom and middle parts of the radial Jet
from the end wall run down the wall where they are dispersed
over the floor as illustrated by the dotted lines on the
drawing. Part of this jet reaches the side walls and runs

up these, meeting the downward jet in the area near the end
wall. Together, the two jets run into the centre of the model.
In the two corners below the diffuser a rotational upward
motion occurs;' the effect of which may be seen from the
picture of the stream lines on fig. 2.4.3-6.
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Fig. 2.4.3-6. Flow in model with the length L/H

= 3,0 and a narrow supply opening. h/H = 8:525,-

w/W =o0.2, WH= 4.7, uw/H = 0.16 and Re = 4500.
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We see that the dimensions used for the supply opening result
in a complicated, three-dimensional, but steady flow. Unlike
the corresponding situation in.deep rooms, fig. 2.4.2-4, the
flow 1s symmetrical around the median plane through the
supply opening.

However, this is only one example of a flow which may arise
in a room having one supply opening. Another work worth of
mentioning is that of Malmstrdm and Svensson [21] showing
that a jet from a single circular supply opening in the
median plane of a room may tend to move back and forth in
front of the opposite wall.

2.4,4, Flow in models with width W/H = 1.6
and gifferent depths.

This series of experiments i1s primarily characterized by a
limited width in the model. Alsoc the supply opening is smaller
than in previous experiments, h/H = 0.020. The size of the
return opening is u/H = 0.15.

When discussing the results it is convenient to divide the
flow area into three sub areas in the model, The first area

is the upper third of the model. Fig. 2.4.4-1 and fig.
2442 show that at all lengths of model L/H = 4.9, 4.0,
3.0, 2.0 and l.o there is a flow in this area which, gqualita-
tively, can be characterized as a two-dimensional wall Jet.
With the length L/H = 4.9 the flow is somewhat unsteady at the
farthest point from the supply opening, but the damping from
the side walls is significant compared to the flow in a wide
model of this length. With the lengths L/H = 4,9, 4.0 and
3.0 there are two characteristic areas in the lower two
thirds of the model. Farthest away from the supply opening
there is a recirculating two-dimensional flow originating
from the top wall Jet, which is turned twice 90O at the

end wall. The velocity is relatively high in this area. Just
below the supply opening there is an area of very low
velocity, containing a horizontal circulating motion

which sometimes occupies the whole width of the model .




L/H=1.0

Fig. 2.4.4-1. Flow in models having a width of
W/H = 1.6 and different lengths. h/H = 0.020,
w/W = 1.0,u/H = 0.15 and Re = 47oo0.

)




_ 41 -

With the lengths L/H = 2.0 and l.o the lower two-thirds of
the model are completely controlled by the two-dimensional
recirculating flow, figs. 2.4.4-1 and 2.4.4-2.

So far, we have only studied the stream line pattern in the
median plane of the model. Fig. 2.4.4-2 shows two pictures

of stream lines, one from the median plane, Xz/W = 0.5, and one
from the area close to the sgide wall, XB/W = 0.05. For LL/H =
2.0 in particular, there is a characteristic difference in
gtream 1line distribution. We see that the injected jet has

a tendency to run down the side walls, something which has
also been shown by Linke [ 19],Urbach [34] and Nagasawa [26] .
With the experimental method we use, it is not possible to
establish whether this three-dimensional effect has any
significant influence on the flow inside the model, i.e.
whether the flow inside the model is quantitatively two-
dimensional without influence from the side walls.

Fig. 2.4.4-3 shows two gituations related to the previously
mentioned flow in the area below the supply opening. The flow
is a horizontal circulating flow, which sometimes occupies
the whole width of the model. It is unsteady and changes its
direction every few seconds in the case of VO = 10-15

m/s, equivalent to a Reynolds number of 47oco0.to 7loo. The
pictures of the stream lines apply to L/H = 3.0 and illustrate
the flow close to the side wall, XB/W = C.05. The drawings
show the two situations as seen from agbove. The dividing line
between the horizontally circulating flow and the return flow
along the side wall is clearly visible on the bottom picture.

With the lengths L/H = 4.0 and 4.9 the velocities are lower
than at L/H = 3.0, and the horigzontal motion sometimes ceases
completely. At all events, flow velocities are so low that
they are of nosignificance to the situation in practice in
an air conditioned room.
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ian plane of model,

in med

Fig. 2.4.4~-2. Flow

XB/W = 0.5, and at one side wall XB/W = 0.05.

h/H = 0.020, w/W = 1.0, L/H = 2.0, W/H

u/H = 0.15 and Re = 4700.

1.6’
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|

Fig. 2.4.4-3. Two different stream line pictures
at the side wall of the model, x /w = 0.05.

h/H = 0.02, w/W = 1.0, I/H = 3. o, W/H = 1.6,
u/H = 0.15 and Re = 4700,
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2.0.5. Vertical velocity profile in a model.

Velocity proliles are measured in models having a length of
L/ = %, %.1 and 4 and widths of W/H = 4.7, 1 and 0.5. The
other dimensions are

h/H = 0.0056
w/W = 1.0
u/H = 0.16

The vertical velocity profile is measured at Xl/H = 2.0,
The position is chosen in such a way that 1t is in the
range where the velocity is at a maximum in the lower part
of the recirculating flow in the case of a length of I./1 =
3.0. This velocity is important in air conditioning because
it corresponds to the maximum velocity in the occupied zone
of a room.

The velocity profile is also measured close to the centre of
the recirculating flow. This gives simple mathematical
expreséions for the transformation of the signal from the
anemometer to velocity and intensity, because the mean

velocity in this area is parallel with the Xl—axis.

In a turbulent flow the instantaneous velocity Oi may be
expressed as the sum of a mean velocity vi and a time depen-

dent fluctuation v{.

V: = V:+ V: . (2.4.5-1)

When the mean velocity is parallel with the Xl—aXiS, the
total instantaneous velocity should be expressed as
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‘.’tot = Wv.l + V1' )2 + V2'2 - V'32 (2.4.5-2)

The hot-wire is placed so that the mean velocity vy forms
a right angle to the probe support, i.e. the X5 axis 1s
parallel to the probe support and the xa—axis is parallel
to the hot-wire probe.

A hot-wire is sensitive to the direction of flow, and there-
fore the effective cooling velocity deviates from formula
(2.4.5-2), and becomes

L) L) L .2
Vetf = V( v1 + V1 )2 + K12V22 + K%Va (2 4.5=3)

where Kfais about 1 and Ksz about 0.1 because the hot-wire
is only very slightly sensitive to velocity components
parallel to the hot-wire. The value of Kfzand K22 also
depends on the type and geometry of the hot-wire.

If we limit ourselves to situations where fluctuatioris are
small compared to the mean velocity, we may ignore their
second power and formula (2.4.5-3) can be written as

. 2 - :
Vetf ~ \Fﬁ A N A R (2.4.5-4)
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The signal from the anemometer is linearized, and by calibra-
tion at a known velocity having a low turbulence intensity
the proportionality constant K is determined from the

following expression

E +E' = K V45 (2.4.5-5)

where I is the mean value of -the voltage signal and E' is
the fluctuating part. If we suppose that formula (2.4.5-4)
can be used in large areas we get the following express{gns
of the mean velocity vy and the turbulence intensity w;& R

Y] - E I K (2.4-5"‘6)

Fig. 2.4.5-1 shows the velocity profile vl/VO at a Reynolds
number of 470c in the model having the length L/H = % and

the width W/H = 4.7. We see that the upper part of the velocity

is 0.62 times the supply velocity, which also agrees well
with the corresponding velocity of 0.64 calculated for a wall
Jjet after Schwarz and Cosart[BE] .

In the middle range of the profile the mean velocity is much
lower than the fluctuations. Formula (2.4.5-%) shows that

the effective cooling velocity does not become correspon-
dingly low, and Miller and Comings [22] have demonstrated
that the signal E/K in this area 1s an expression o¢f the type

T A T T T A L R T
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Since there exists a mixing layer in the middle range with
a fairly constant velocity gradient, the dotted curve is a
reasonable expression of the mean velocity.

Fig. 2.4.5-1 also shows the profile for intensity V:Tf(vo .
We have chosen to plot this value on the same side as the
respective mean. velocity, even though it is not to be cal-
culated with signs . In the upper part of the profile the
measurements are in good agreement with the results from a
wall jet. Thus Nelson [27] , for example finds that the
maximum value of ;FE/V§ is 0.14 in a jet of similar

length. It is very characteristic that the intensity reaches
a maximum where the gradient of the mean velocity is greatest,
and this is due to the production of turbulence by the
gradient.

Fig. 2:ﬁ:5—2 shows the velocity profile vl/VO and the inten-~
sity V;?E/VO at a Reynolds number of 7100. If we compare this
with fig. 2.4.5~1, where the Reynolds number is 4700, we see
that both the mean velocity and the turbulence are similar

at the two supply velocities.

Note the maximum intensity at the lower surface. This maximum
is due to the considerable local production of turbulence in

the mean velocity shear layer. The corresponding maximum

at the upper surface was not found because the hot-wire

probe has only been taken a small distance past the

mean velocity maximum.,

Fig. 2.4.5-% shows the velocity profile in a model with the
length L/H = 3.1 and the width W/H = 4.7, i.e. in practice
the same dimensions as those applicable for fig. 2.4.5-1 and
2.4.5-2. The measurements are carried out with a 55K01 ane-
mometer system while the measurements for the two previous
figures are made with a 55D01 anemometer system. There is a
slight difference between the results for L/H ~ 3.0. Thé
reason may be that the different dimensions of probe support
influence the results, because the air flow is at right angles
to the probe and the support. Since the sub model used in all
the measurements is very small (H = 12.65 cm) and the supply
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Fig. 2.4.5-1. Vertical velocity profile

v,/V, and turbulence intensity “Viz Vg

in a model of big width. h/H = 0.056, w/W = 1.0,
W/H = 4.7, L/H = 3.0 and Re = 47co. The profile
is measured at the coordinates Xl/E = 2.0 and

XB/W = 0.5..
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Fig. 2.4.5-2. Vertical velocity profile v,/V_
and turbulence intensity V”Z/VO in a model
of big width. h/H = 0.056, w/W = l.o, W/H = 4.7,
L/H = 3.0 and Re = 7loo. The profile is measured
at the coordinates Xl/H = 2,0 and XB/W = 0.5.
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Fig. 2.4.5-3. Vertical velog}py profile vl/VO
and turbulence intensity Viz IVo in a model
of big width. h/H = 0.056, w/W = l.o, W/H = 4.7,
T/H = 3.1 and Re = 71co. The profile is measured
at the coordinates xl/H = 2.0 and XB/W = 0.5.

The results for W/H = 1.0 and 0.5 may be disturbed

from the probe support.
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opening is difficult to aligh it is also difficult to recreate
a measuring situation with great accuracy.

In the case L/H = %.1, fig. 2.4.5-3, the velocity profile is
also measured at width W/H = 1 and 0.5. There is a tendency
for the signal to increase in the lower part of the profile
especially in areas just about of the maximum velocity.

Owing to the small dimensions and the possibility of distur-
' bances from the probe support, however, it cannot be concluded
with certainty, that thechangein profile is produced

by a three-dimensional effect‘at the gide walls.

Linke [19] is one of the first to show how a three-dimensional
effect at the side walls can influence the flow on the medianm
plane. By means of some measurements made in a model with the
width W/H = 1.0 and the length L/H = 3.0 he shows that the
velocity profile on the median plane does not meet the equation
of continuity if the flow is considered two-dimenéional.
Obviously , the flow in the lower part of the profile is too
large. He concludes that the reason is dispersion of the
injected jet down and along the side walls, as is also shown

on fig. 2.4.24-2, forming a three-dimensional flow.

Urbach's [34] measurements of the velocity profile in a model
with the width W/H = 1 show that in practice the flow may be
considered two-dimensional in the case of length L/H = 2.0
(the two-dimensional continuity eguation was met in the

' measured velocity profile). At L/H = 4.0 he registers devia-

tions as measured by Linke.

Nagasawa [26] has carried out a complete — though qualitative -
‘measurement of the velocity field in a model having the
dimensions h/H = 0.02, L/H = 4.0 and W/H = 1.0. These measure-
ments show how the horizontal velocity profile in the lower
part of the model reaches a maximum in the middle and decreases
in velocity out to the side walls, i.e. a three-dimensional
flow.
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Fig. 2.4.5-4 shows the velocity profile in a model with the
length L/H = 4.0 and the width W/H = 4.7. The velocity profile
is as previously measured at Xl/H = 2.0. Fig. 2.4.%-% shows
that we must expect that the mean velocity in the lower part
of the model will have a component in the negative direction
of the Xg—axis. We mugt therefore observe that the velocity

on fig. 2.4.5-4 is the total velocity.

2.5. Moéel tests with temperature distribution.

We ghall use a model having the following dimensions

h/H = 0.056
w/W = 1.0
W/H = 4.7
L/H = 3.0
u/H = 0.16

The flow in the model is steady and two-dimensional, so that
the measured temperature distribution is suitable for compari-
son with the results from the prediction method.

The tTemperature distribution is created by supplying heat
from an ESWA-heating film, placed on the bottom of the model.
The temperature is measured at lo points by means of thermo-
couples. Three thermocouples are placed on the heating film
at distance Xl/H'= 0.5, 1.0 and 2.0. One thermocouple is placed
in the supply opening and two thermocouples are placed verti-
cally above each other in the return opening. The temperature
profile in the model is measured on the horizontal plane H/4
corresponding to the coordinates X2/H = 0.75, and the posi~
tions din the Xl—directianare:xl/H = 0.1, 0.5, 1.0 and 2.0.
All thermocouples are placed on a vertical plane at XB/W =
0.66.

In addition to the geometrical dimensions, complete specifi-
cation of .the individual experiments includes Reynclds number
and Archimedes number according to the formulas (2.2.%-2) and

(2.2.%-3).
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Fig. 2.4.5-4. Vertical velocity profile vtot/vO
and turbulence intensity \q%t/vo in a model of
big width. h/E = 0.056, w/W = l.o, WH = 4.7,
I/H = 4.0 and Re = 7loo. The profile is measured

~at the coordinates Xl/H = 2.0 and XB/W = 0.5.
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The measured temperature fluctuates just like the
velocity and can therefore be expressed as a sum of a mean
temperature T and a fluctuation T'.

T =T+ T (2.5-1)

Since the thermocouples have a small time constant it is
possible to get a qualitative picture of this effect by deter-

mining T as a function of time on the pen recorder. The mean
temperature T is determined graphically.

Figs. 2.5-1, 2.5-2 and 2.5-3% show the horizontal temperature
profile in the model at the three Reynolds numbers Re = 2400,
4700 and 7loo. The temperatures are given dimensionless
according to formula (2.2.1-5). The supply temperature will
be T;: O and the return temperature ( T, + ATO)* = 1. We

see how the temperatures increase in the direction of the
recirculating flow and reach their highest level below the
supply opening.

The three figures also show the distribution of the surface
temperature Ts. Although constant electrical power is supplied,
the heat flow is not uniform along the bottom owing to the
temperature coefficient of the heating film resistance.

The measurements in fig. 2.5-3 were made at Archimedes numbers
so small that the buoyancy is of no importance to the flow,
see section 2.2.%. The gtream line digtribution and the
velocity profiles that have been found for isothermal flow

in the same model are therefore also applicable for the ,
situation of fig. 2.5-3.

Fig. 2.5-1 shows that the air temperatures are significantly i
lower than the corresponding temperatures on fig. 2.5-2 and |
2.5-3. This change is presumably due to the influence of
buoyancy on the flow at the higher Archimedes numbers.
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Fig. 2.5-1. Horizontal temperature profile at the
height xg/H = 0.75 and surface temperature profile.
h/H = 0.056, w/W = 1.0, W/H = 4.7, L/H = 3.0 and
Re = 2400, '
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Fig. 2.5-2. Horizontal temperature profile at the
height XB/H = 0.75 and surface temperature profile.
h/H = 0.05%6, w/W = 1.0, W/H = 4.7, L/H = 3.0 and
Re = 4%o0.
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Re = "loo.
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If there is a sufficiently big témperature difference it is
likely that the supply jet will run down the wall beneath the .

supply opening and reverse the direction of flow in the model,
as is demonstrated by Millejans [25] in a similar model at a _E

smaller Reynolds number.

R AR RRRGT
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3, Numerical prediction of the flow in. a room.

In the following section we shall examine a prediction method
for determining the air distribution in a room. The method is
well suited for the purpose since it predicts air distribution
“in all ‘areas of ‘the room. This is not the case with the ordina-
ry prediction method, where it is only possible to follow a:
wall jet or a free jet in the first part of its progression.

The prediction method is based on a numerical solution of the
flow equations on a computer. The method requires so much
computer space: that it is necessary to limit the prediction
to steady, two dimensional flow (The situation in 1971-73).

Section 3.1 to 3.% gives general information on the numerical
method.: For more detailed information reference is made to
the literature and to appendices I to III. Section 3.3.1 is of
special interest, because it shows how the calculations are
made for various types of diffusers.

In section 3.4 a comparison is made between measured and pre-
dicted results. The primary purpose of this seetion is to
illustrate the applicability of the numerical method. But

the section also contains conclusions of general interest to
air conditioning , and is therefore recommended to readers
even if they have no special interest in the numerical pre-
diction method. '

3.1l. Two dimensional equatione and turbulence model.

If we consider theset of general equatlons in section 2.1.,
comprlslng the equation of continuity (2 1-1) the three
equations of motion (2.1-4) and the energy equation (2.1-5),
with the fiveunknowns¥ ,V5,%3, P and T, we see that they
together with the boundary condltlons represent a complete
description of the flow. ’
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At the velocities and temperature differences prevalent in

air conditioned rooms the flow will always be turbulent. The
turbulence is described by the fluctuations in the variables
involved, and these fluctuations take place at dimensions down
to 1o~2 times the main size of the problem, e.g. the height H.
We see that it is difficult to solve the set of general equa-
tions Dby means of a numerical method because such a method
requires several difference equations within the length

1072 H, which leads %o an untractably large

number of difference equations when the whole flow region is
to be described.

Tnstead we shall choose to consider the mean value of the flow
as the unknowns. The reason is that the variations in the

mean values over a given distance are considerably smaller
than the  variations in the instantaneous values, and the mean
values may therefore be described bY a limited number of
difference equations.

As a step towards the set of equations which is solved
by the numerical method, equations (2.1-1), (2.1-4) og (2.1-5)
are rewritten to the following set of equations.

9, . o | (3.1-1)
axi .
ov ov,
p°(a—t' *Viax}) = PoB 9T -To)
_..a_p + _a. _a—v' - ! .) .1“2
5 ax,(”° ax; PoVi V] (3 )
aT aT a [n 3T : )
— , — 2 ——— - T o
p°(at V;axj) axlcpaxj PoVj o (313
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where
Vi + Vi' = Vi' ' (3-1-—"—1—)
p+p =5 | (3.1-5)
T «T =1 (3.1-6)

Correlations of type—pOVTV;and oncp1f77may be considered as
a stress and a heat flux respectively, caused by turbulence.
The idea behind the turbulence model is now to replace these
correlations by terms containing a turbulent viscosity By
:accordlng to expressions of the type

o VYT £ w2y . By C(3.1-7)
| pov]Vz = IJ't( X; ax12)

== _ K, 3T . (3.1-8)
_pov1T = 0:\ ax; |

where dh is. the turbulent Prandtl number, see for example,
Launder et al.[17]

The new variable My describes the turbulence on the basis of

turbulent kinetic energy k and dissipation of turbulent klnetlc

energy € .

By = Cupy o (3.1-9)
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C

L is an empirical constant, and k and e are defined as

1 I ]

k = = v'v. .1-10)

7 ViV (3

¢ = Re 8vydv; (3.1-11)
Po Ox. 38x

177

Turbulence at a given point is not only dependent on local
conditions. It can, via the energy k, be transported sround

in the flow area, and it is therefore necessary to describe

it with the aid of transport equations for k and € . Launder et
al.l] 17]has developed transport equations for these values and
reduced them, so that together with the eguations for the mean
flow they represent a complete description of the flow. The
equations are given at the end of this section, and they are
disignated (3.1-18) and (3.1-19).

As mentioned we shall confine ourselves to two-dimensional
steady flow. We shall also make a reduction of the numbers
of equations by leaving th.evaria'blesvl,rv2 and p and
introducing the vorticity w and the stream function ¢

as new variables.

The vorticity is twice the angular velocity of the air at
the examined point and is given by

w = Yy _ 2V (3.1-12)
1 .
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The stream function describes the vector field (vl, v2) by
a single scalar quantity ¢.

The stream function is a practical variable when describing theé
solution to an air conditioning problem, because lines of :
constant ¢ values are stream lines, i.e. lines parallel %o the
velocity vector. The connection between velocity and Stream
function is based on the equation of continuity (3.1-1), and
it is given by the following expressions.

1 3¢
YV, = —— -
17 % Bxy (3.1~13)
=-1 3%
V2 © e 3% (3.1-14)

We are now able to show the total set of equatiéns in the form

which i1s used in the numerical model. The first equation
(3.1-15) is the vofticity transport equation derived from the |
two equations of motion in the xq and X5 directions. The segondé
equation (%.1-16) is the relation by definition between the
vorticity and the stream function, and the third equation
(3.1-17) is the energy equation. The last two equations are’
transport equations forkand ¢ , i.e. equations that represent
the model of turbulence.

The set of equations consists of five non-linear partial
differential equations. These are all built up with convection
terms on the left side and diffusion terms, production terms
and dissipation terms on the right side, except equation
(3.1-16) in which the diffusion terms are on the left side.
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8x1 X9 sz X1 ax1 8x1
3 ahm) 9T
B r— + — - "'l
axz( ax2 PoBgz ax1 (3.1-15)
8 (1 8%y, 8 (_1_ Qi) = - 1-16
8x1 (po ax1) 8x2 Po X2 w (5. )

.8 (it Q-T-) (3.1-17)

2 (kgi)___a_ (ka:u) - i(&tﬂ)+i(ﬁta_k)

3 x4 X9 dx o 3 xq 3xq\ 0y Iy Axg\ 9 8%,
2 2 2
.y [2((9—"1) +(a—"2) )+(ﬂ1 . g1’2) ] - Poe  (3.1-18)
8)(1 ax2 3)(2 3x1
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The values Cis Cos Cyps Ops 9y and g, are empirical constants
whose values are given in table 3.1-1.

The constants are optimized for general fluid mechanics
problems, and no changes are made in connection with prediction
of the air motion which takes place in air conditioned rooms.

Use of the turbulence model assumes a high Reynoldé number
flow. It is possible to check whether this assumption is
fulfilled in a prediction. The method is described in more
detail in appendix I. ) '

%.2. Numerical method.

The principle of the numerical method is to replace the diffé—
rential equations by a number of difference equations which
are solved by means of a modified Gauss iteration. The examinéd
section is divided up into a number of points in 4 fectangular
grid. The distance between the points is chosen in such a

way that it is permissible to consider w, ¢, T, X and € as
linear between two points. In areas where gradients of the
individual values are great, the points are reiatively close
together , and in areas where the gradients are small there

is a greater distance between the points. We see that the chosen |

rectangular grid is important to the results of the numerical
solution, both with respect to the number of points and the
distribution of a given number of points. Appendix II gives a
more detalled discussion of how these ﬁroblems are solved

by the numerical predictions. '

‘Evaluation of the difference equations and the lay out of the
_cdmputer programme which carries out the iteration is described .
in detail by Gosman et al.[lo], and{11l]. It will therefore
suffice here to mention the principle of the iteration and
introduce one or two ideas of importance in connectiqn with

the numerical method.
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1,45 2,0 0,09 0,51 1,0 1,3

Table 3.1-1. Empirical constants in the equations

(3.1-15) to (3.1-19) and (3.1-9).
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The five differential equations are replaced by five difference

equations at each point. At point P on fig. 3.2-1, for example,
we get

tPP= CE tPE + CW'.Pw-i- CNtPNd-CS(PS + D (3.2-—-1)

where @ denotes w,¢ , T, k and e. The individual C-coeffi-
clents and D are dependent on the unknown wvarisbles and the
equations are therefore non-linear.

During the iteration the following formula is used

n.n netned n . n ~ned N+l
‘PP = CE ‘PE-PCW(PW +CNlPN+CSLpS +D | (3.2-2)

We will begin by choosing an arbitrary distribution of ¢

called.tp1 . Row by row, we shall now determine a new ¢ which

we shall callkpz. Equation (3.2-2) shows the caleulation of
¥p at iteration n + 1. For points E and N values from
iteration n are used and for points W and S wvalues

from iteration n + 1 are used, i.e. the latest obtained
values are used all the time.

The difference between 192*1 andeB is called the residual
Rn+1

9 - When convergence takes place, the distance between two

Successivexmavalues will approach zero, and the iteration will

be cut-off whenF2$’1have all dropped below a certain value
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Fig. 3.2-1. Rectangular grid with nodes.
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¢nd - N

" < 0.001 (%.2-3)

It must be pointed out, however, that the condition (3.2-3)
isl not aiways sufficient to ensure that the converged so-
lution has been found. By way of a check, the change in some
of the individual values ¢ should be followed to see whether
they converge towards a fixed value.

The iteration can be made with successive over-relaxation or

under-relaxation using the formula

(pn#1_ n o Rn“"l (3.2“4)

where L is the relaxation parameter. By using over-relaxation
where l<1c:.‘P < 2 , we can accelerate the change in ¥p of
which Rw is an expression, and we can, in some cases, reduce
the number of iterations.Similarly with under-relaxation,

where O < ap <1, we can damp the oscillations in the residual
R¢ in an otherwise qscillating iteration, and it is perhaps
possible to bring it to convergence. Owing to the non-linearity
of the equations we often have to resort %o under-relaxation

on certain variables in order to ensure convergence, and
over-relaxation on other variables to avoid using extensive

computer time.

It ig generally known that the relaxation parameter ought to be
about 1.0 for w-and ¢-equations and about 0.5 for k-and

¢ —-equations. A change in the Reynolds number and a change in
grid type may result in divergence in an iteration which would

otherwise converge.
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Because of the high number of equations a computer of the
size loo k bytes must be used. If, for example, a grid with
21 x 21 points is used, we get 21 x 21 x 5 = 2205 equations
and 2205 unknowns.

5.%. Boundary conditions.

As mentioned earlier, the boundary conditions'are a necessary
part of the description of a problem, and they are dealt with
in the following section on supply opening, return opening and
boundary values along surfaces and symmetry planes.

3.3.1 Supply opening.

We shall choose to ignore the details of the flow in the immediate
vicinity of the supply opening, and instead describe the

supplied Jjet by values along surfaces "a" and "b", see fig.
3.%.1-1. We obtain two advantages by using these boundary
conditions. Firstly, we do not need to use such a fine

grid as is necessary to describe the development of

the injected jet to a wall Jet. Secondly, we can make predic-
tions for supply openings that are three-dimensional, provided
that the jets develop into a two-dimensional wall Jjet or

free jet at a certain distance.

Calculation ,of the boundary values along the surface "a" is
started by determining the maximum velocity Vm and the thickness
6y of the wall jet that has developed at the distance X,

from the supply opening , see reference [521 .

Vm Xo + XQ -€

o=k, (ZerXa (3.3.1-1)
(o]

.91 =D iQ;x_q

(3.3.1-2)
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Fig. 3.3.1l-1. Boundary and boundary values for a

two-dimensional supply opening.



- 72 -

X, + X is the distance to the virtual origin of the jet, and

0
K,y D, and the exponent e are constants. The calculations

use the constants determineq by Schwarz and Cosart [32] .

KV = 5.4
Dv = 0.068
Xo/h = 11.2
e = 0.56

If data are available for the actual diffuser, these data
should be used. '

For maximum or minimum temperature Tm and thickness GT we

get correspondingly

-e

Im-Tu_y (Xo*Xa (3.3.1-3)
Tg - Ty | h

61 _ Xo *Xa (3.3.1-4

h - °T T n | )

Tu ig the surrounding temperature, i.e. the mean temperature
along surface "db" on fig. %.3.1-1.

The surrounding temperature is not a fixed value but a function
of the maximum or minimum temperature Tm via the flow condi-
tions to be predicted. This connection may give rise to a

very slow convergence of the temperature distribution.
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The velocity profile VJ/Vm and the distribution of the inten-

sities vivy /Ve » viZ/V2Z , v52 /V2  and C?/vn%

at the surface "a" are universal, and are given for example,

by Verhoff [35] and Nelson [27] respectively. By means of

these profiles we can determine the distribution of the
vorticity w, stream function ¢, and turbulent kinetic energy k
as well as dissipatione . Determination of the dissipation
profile involves an evaluation of the distribution of length
scale in a wall jet, and this is described in more detail in
appendix IIT,.

There is a similarity between temperature profile and velocity
profile except in the inner layer, where there is thought to
be a constant temperature equal to Tm, which corresponds to

an adiabatic surface along the wall jet.

Along the surface "b" the boundary conditions for the stream
function are given linearly between the value it has on the
surface below the supply opening and the value it has on the
profile and the surface "a".

The boundary conditions for the other values along the surface
"o" are gilven as

3¢9 . 0

3.1
» (3.3.1-5)

where the x-direction is at right angles to "b" and where ¢
denotes w, T, k and €.

The predicted flow conditions are greatly dependent on
boundary wvalues and nodal distribution around the supply
opening. Therefore, the predicted velocities should always be
compared with the velocity in a free jet or wall jet of same
length. Such a comparison is shown on fig. 3.4.1-2.
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As mentioned previously, it is also posgsible to predict the
flow conditions in the case of special diffuser'arrangements.
Fig. %.3.1-2 shows the supply opening of a plane jet

at a distance X from a parallel surface. Measurements made
by Schwartzbach [33] show that the jet is deflected due to

' the Coanda effect and develops into a wall jet at a distance
Xg from the supply opening. The curves on fig. 3.3.1-2 show
the values for Xa/h, xo/h, Vm/VO and §,,/h. Based on these data
the boundary conditions for a wall Jjet are determined as
before, though it must be pointed out that the turbulence

is higher in this case owing to the deflection of the

Jjet.

If a linear supply opening is located at a great distance from
parallel surfaces, a two-dimensional free Jjet may be used as
boundary conditions. To examplify the treatment of a three-
dimensional supply opening we can mention the arrangement
comprising a row of circular openings. Knystautas [15] has
shown that the jets develop into a two-dimensional free

jet at a distance of about 15 times the distance between the
single openings. Assuming that this distance is small compared
to H or L, the diffuser arrangement may be replaced by a free
jet. Becher [3] has also shown how other types of diffusers
may be converted into single wall Jets or free Jets. '

All of the examples shown later are je%s which are supplied
parallel to a ceiling. The boundary conditions for the
supply opening can, of course, also be arranged so that they
.correspond to supply openings in the floor or in the sill
below the window.

In those cases where h/H2 0.1, the supply opening is used
direct as boundary condition , because X, will otherwise be
too great compared to H and L, and because the opening
itself can be described by a reasonable number of nodes in
this instance.
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Fig. 3.3.1-2. Two~dimensional jet supplied. parallel
to a surface. After Schwartzbach [33] .
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3.%.2. Return opening.

The boundary conditions‘for the return opening do not have a
great influenée on the flow. The vorticity w is assumed to be
zero, and the stream function ¢ is varied linearly'across the
opening, corresponding to a parallel flow with rectangular
velocity profile. For the other variables we use '

&
1
o

(3.3.2-1)

[ B)
b4

in the direction of the flow, where ¢ denotes T, k and

€ -

5.%.59. Boundary conditions at surfaces.

The gradients in a turbulent boundary layer are big, and

a high number of points is required because linearity -

is assumed between the points right up to the surface. We
shall choose instead to let the first point in the flow
area, called P, lie Jjust inside the equilibrium layer.

Then we use the knowledge we have about the flow in

this layer to calculate a slip value at point N on the surface,
knowing the wvalue at point P. The slip value is the boundary
value which gives the correct slope at point P, assuming a
linear variation between N and P, see fig. %.3.3-~1. It is
defined by the equation '

Pp- P _ (ﬁt&) (3.%.%-1)
n
P P

WOlfshtein'[57] has predicted the slip values for v, T and k as
functions of the conditions at point P and at point N and

has converted them to algebraic forms, which in the following
are called the wall functions.
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Fig. 3.%2.3-1. The slip value at a surface.
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The slip values are used as boundary conditions for

T and k. Between each iteration there occurs, of course,
a calculation of new slip values in accordance with the new
conditions at P after a single iteration, and not until the
~end are the true valueSq%qat the surface calculated.

Variation of the vorticity w between N and P is moderate, and.
its boundary value may be used direct. It is calculated from
the shear stress which is also determined by the wall functions.

In the equilibrium layer between N and P a length scale is
used which is proportional to the distance from the surface.
The dissipation € is calculated at point P from this length
scale and the turbulent kinetic energy. The difference
equation for € thus has the boundary value located at the
distancenp.ﬂrom the surface.

The boundary value for the stream function ¢ is a fixed given
value on the surface between supply and return opening. The
gradient of the stream function .close to the wall is small,

so linearity between N and P is reasohable.

In sufficiently large rooms persons and furniture may -  be
simulated by an equivalent roughness in the wall functions
and an "effective height" H. Thermal load from, for example,
persons mgy be simulated by a given heat flux, as shown,
for example, on fig. 3.4.2-1. : '

2.%.4. Plane of symmetry.

In certain situations a section of a two-dimensional flow
area will contain a plane of symmetry. This is the case, for
example, when two rows of supply openings are placed in a
plane symmetrical geometry with plane symmetrical boundary
conditions. The discharged supply air will, after possible .
deflections,meet on the symmetry plane and proceed parallel
with this.
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In this situation it is sufficient to congider the flow in
one area. On the symmetry plane boundary conditions are
based on the vanishing of all ¢ gradients at right

angles to this plane.

oY
A .
3 0 (3.3 1)

4,4, Regults.

3.4,1, Predictions at small Archimedes numbers.

The following predictions apply in situations where velocities

are high and temperature differences are low. The forced con-
vection is dominant compared to the free convection, and this
means that we can ignore the source term of buocyancy in the
transport equation for vorticity. A prediction is completely
characterized by the Reynolds number and the geometry of the 4
room, while the influence from the Archimedes number is vanishingf

First comparisons are made with some measurements from

a full scale test room at the Technical University of Norway,
Trondheim [12] . The test room is 8.3 m long, 3.4 m wide, and
2.8 m high. The supply is located below the ceiling at a
distance of 22 ecm from the one end wall. The opening runs
along the width of the room and has a height h of 15 mm. Two
return openings are located in the bottom corners of the
opposite end wall. The velocity 1s measured by spherical
anemometers, and the air flow direction is determined by
injecting smoke into the room.

The upper section on fig. 3.4.1-1 shows the predicted and
megsured velocity distribution in the room. The wvelocity is
indicated as "isovels", i.e. lines of constant velocity,
and both the predicted and the measured velocity field
vtot/vo are given dimensionless by dividing with the supply

velocity.
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Fig. 3.4.1-1. Velocity distribution, stream line
distribution and distribution of turbulent kinetic
energy. Comparison with measured velocity distribu-
tion [12] . h/H = 0.005, x3/H = 0.08, I/H = 3.0,
u/H = 0.1, 15 x 21B and Re = 18oo0.
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Viot © v}z +v22 (3.4.1-1)

The velocity is 8 per cent of the supply velocity at floor
level in the right side of the occupied zone and then decreases
to legs than 2 per cent in the upper and left section of the
occupied zone. The predictions and the test have been made at

a Reynolds number of 18co0, corresponding to a supply velocity
of 1.8 m/s. The velocity in the occupied zone, therefore, lies
between 14 and 4 cm/s.

It appears that in practice the dimensionless velocity is
rather independent of larger variations in supply velocity,
because the structure of the turbulence in the recirculating
flow will be similar and thereby independent of Reynolds
number, If the supply veloclty increases to 3.6 m/s, it results
in a velocity in the occupied zone which lies between 28 and

8 cm/s. It will be seen that a doubling of the supply velocity
means both a doubling of the maximum velocity and a doubling
of the veloeity gradients. It is thus more difficult to
obtain a uniform state of thermal comfort in the whole
occupied zone at high velocities than at low velocities in the
case of isothermal flow.

The middle section on fig. %.4.1-1 shows the distribution of
the stream lines in the room. The amount of air which is
transported between two stream lines is constant, and therefore,
the velocity is high where the stream lines are close and low
where the distance is great. The stream function is made dimen-
sionlegs by division with the supplied mass flow.

$* = ¢/ hpyV, (3.4.1-2)

Between stream lines 4 and 6, for example, twice the supply
amount is transported, and in all, an amount of air approxi-
mately seven times the injected amount is set into motion.
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It must be pointed out that the stream lines are only
expressing mean values. At a fixed point, the stream line is
parallel to the mean velocity, but because of the various
directions of the instantaneous velocities a transfer of mass
and energy takes place across the stream lines. If the air is
injected at a high-temperature, heat diffusion will take place
across the upper stream lines down into the room.

The bottom section of fig. %.4.1-1 shows the distribution of
dimensionless turbulent kinetic energy k/Vog. Turbulent kinetic
energy is produced by the turbulent stresses. These stresses
are, in the applied model of turbulence, expressed as velocity
gradients of different types as will be seen from the production
term for turbulent kinetic energy in the transport equation
(%3.1-18).

2 —_— & —Z | = » -.-—-2) 3- .'_5

If we compare the turbulent energy with the distribution of
isovels we may see that the energy is high where the velocity
gradient between the discharged jet and the surrounding air
is great. The energy is also high in the thin shear layer
between jet and ceiling.

Close to the return opening there is an area where the energy
has a local maximum. This energy is due to the deceleration
of the jet and is produced by turbulent normal stresses. ‘

Tt should be noted that distribution of energy does not follow
the distribution of energy production everywhere.Turbulent energy
is produced in certain areas and transported in the mean flow
direction by convection and, perpendicular to the mean flow
direction, by turbulent diffusion. The figure shows that the
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Fig. %.4.1~2. Decay of velocity in a Jet in a
closed room. h/H = 0.005, xd/H = 0.08, L/H = 3.0,
u/H = 1.0, 15 x 218 and Re = 18oco.
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velocity gradient between the discharged jet and the surroun-

ding air gives the most important production of turbulence _ »
and that it diffuses from this area giving an even, high level

of turbulence everywhere in the room. -

Fig. %.4.1-2 shows -the decay of the maximum velocity in the Jet
which runs along the ceiling, the end wall, and the floor.

The dotted curve shows the decay of wvelocity in a wall jet of
corresponding length. We see that the Jet drops in velocity

in the corners. It increases in velocity along the end wall
and along the floor, but does not reach a velocity as high as
a wall jet of similar length. The two open areas on the curve
denote the length, which is added to the jet because it is
ignored that the Jet does not follow the corners.

Fig. 3.4.1-% shows a comparison between a measured and a

predicted velocity profile in the following case

h/BE = 0.056
IL/H = 3.0
Re = Ploo

The measurement of the velocity profile is mentioned in

il
i
i
I
i
t;
£f
i

section 2.4.5. Both profiles are dimensionless by division with
the respective inlet velocities. It will be seen that the
calculation gives a satisfactory velocity profile over the
whole area.

It is also possible to compare the calculated turbulent.
kinetic energy with the measured fluctuation WWZ .If we
assume that the flow may be characterized as a wall jet

the following formula applies

V1'2 v ‘/? | (3.4.1-4)
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Fig. 3.4.1-3. Comparison between predicted and
measured velocity-~ and turbulence intensity pro-
file. h/H = 0.056, L/E = 3,0, 15 x 21B and

Re = 7loo.




- 86 -

The experimental results indicated in fig. 3.4.1-4 are from
Urbach [34] . They are made in a model 2 m long, 1 m ol
wide and 1 m high. The supply opening is situated below the :
ceiling at one end wall and runs along the whole width of .
the model. The size of the opening h can be set at various '
values. The return.opening is situated at the bottom of the
opposite wall.

As can be seen from formula (3.4.1-2) the maximum value of the
stream function is an expression of the amount of air set -into
motion compared with the supplied amount. Fig. 3.4.1-4 shows
how this quantity increases with the decreasing height of supply
opening. The supplied amount is always the same, i.e. the

supply velocity increases with a decrease in supply opening.

It is an advantage that the maximum value of the stream
functidn¢;ﬁ£;big. The following figs. 3.4.1-5 and 3.4.2—1'sh0w
how the temperature differences in a room become more even

with a decrease in the height of the supply opening, which also

means an increase in ¢F .

i
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At a given amount of supply air - the quantity of which may be

. set according to a thermal or hygienic criterion - the entrain-
ment and the amount of air set into motion in the room must

be limited. The reason is that the supply velocity increases I
with decreasing supply opening and causes an increasing velocity
in the occupied zone. Thus this velocity and the noise
generated by the diffuser limits the minimum size of the

supply opening.

In section 2.5. the temperature distribution is measured in
the following situation:

h/H = 0.056

L/H = 3.0
Re = Yloo
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Fig. 3.4.1-4. Effect of supply opening geometry
on recirculation. L/H = 2.0, W/H = 1.0, 15 x 19
and Re = 4o00.
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Fig. 3.4.1-5 shows a comparison between these measurements

and corresponding predictions. In section 2.2.2 we have shown
that the influence from thermal radiation falls proportional
to the decreasing wvalue of the scale 1/M. Therefore, thermal
radiation can be excluded from the calculations. The Archimedes
number in the measurements is so low that buoyancy is also
neglected in the calculations.

The temperatures in fig. 3.4.1-5 are given in dimensionless
form. The reason is that a dimensionless solution contains

many solutions if the Archimedes number is low. All temperatures
T are given in reference to the supply temperature To.by
subtracting this temperature, because a solution is independent
of the temperature level. A positive temperature T* is therefore
greater than the supply temperature TO, and a negative tempera-
ture is less than TO. At low Archimedes numbers a solution is
independent of - the difference ATO between the supply
temperature and the return temperature. Therefore, the
temperature digtribution is made dimensionless by dividing

with ATO.

¥ _ T =T, . _ _ _'
T* = AT, | (%3.4.1-5)
or
*
T = T7AT, + Ty (3.4.,1-6)

At a supply temperature To of 22°C and a temperature difference

ATO of lOC, the dimensionless temperature T* = 1.6 corresponds
to 23.6°C, see formula (3.4.1-6). If the load is deubled at

T T T T T T T T e LT L e L T




- 89 -

T "To
ATo
2.6 L] ] |
Re = 7100 leH =0.75
Ar~0
2.2 F -
0 V DO Experiments
18 } ¥ Prediction i
14 | -
10
a0 05 1.0 1.5 20 25 3.0
Ts" To X1 /H
ATo
20 T T T T
X2/ H - 1-00
1% F
10 F
5 F
0 i 1 1 1 L
0.0 05 1.0 15 20 25 30

x1IH

Fig. 3.4.1-5. Comparison between measured and
predicted air temperature- . and surface temperature
profile. h/H = 0.056, I/H = 3.0, 15 x 21B and

Re = 7loo.
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the same air flow rate, so that ATO becomes EOC, the dimension-
less temperature distribution is unchanged. The dimensionless
temperature T* - 1.6 corresponds in this instance to 25.2°%C.

If the Archimedes number i1s so high that the buoyancy has a
significant influence on the flow it is not possible to attach
more values to ATO. I'redictions must be made for the actual
values of ATO and, therefore, of all the Archimedes numbers,

see section %.4.70.

The turbulent I'randtl number is, in principle, a function of
the turbulence. However, it varies only slightly compared to
the other turbulent parameters, and is of the magnitude 1.
I'or boundary layer flow a value of 0.9 is often used, while
for free turbulent flow a wvalue of ©.5 is used. For the pre-

dictions made here a value of 0.5 is used.

When the temperature distribution along the surface "a" at
the supply opening is calculated it is assumed that KT is 0.9 KV’
see equations (3.3.1-1), (3.%.1-3) and fig. %.3%.1-1.

So far, the predictions mentioned have embraced situations

where the flow is in practice steady and two-dimensional. IT

we predict the flow in a deep room, we shall of course, get

a solution that also in this case represents steady two-
dimensicnal flow. In the case of h/E = c.056 a preliminary
prediction in a coarse grid gives a penetration of lre/H-w6.5,
and this is not much in conflict with the measurements showing
that lre/Hav4-5, see section 2.4.2. It is also in agreement
with various values given by Bradshaw and Wong [5] for reattach-
ment behind an obstacle in .a turbulent shear layer.

Since, in this case, the flow really is unsteady or steady
three-dimensional, it will be seen that one should always

have knowledge of the nature of the flow before making a pre-
diction. Section 2.4 gives some data on the nature of the flow
in different situations. In special cases it is recommended that
a preliminary model experiment should be made.
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Hitherto we have described the supply opening by the ratio h/H.
Although this ratio is a principal parameter, it is not, how-
ever, sufficient to describe the two-dimensional flow from

the jet. Constructive details such as turbulence-generating
corners before the inlet, sectional division of the nozzle,
grid arrangement and alignment with the ceiling may be of
importance to the established wall jet. These factors can be
difficult to express geometrically, but their effect is
expressed by the coefficients in formulas (3.3.1-1), (5.3}1—2),
(3.3.1~3) and (3.3.1-4).

Based on Forthmanns measurements of isothermal velocity pro-
 files [9] the following set of coefficients can be derived

Kv = 4,1
Dv = 0,082
e = 0.5

The coefficients are formed by first describing 6y as a
function of X g0 formula (3.%.1-2). This gives us X, and Dv'
I1f we assume that e = 0.5, Kv can then be found from formula
(3.3.1-1).

If we compare this with Schwarz' and Cosart's coefficients [52] f
it will be seen that there are some deviations.

Myers et al.[24] expresses the velocity decrease and the
increase in boundary layer thickness in a wall Jjet as follows

Vm 1 (3.4.1-7)
—_—n 2 e,e,—m etal—~
Vo 1+0.381("L7”l i, 1)

by 205

e T (0.65Re“5 _1.0857rz) (3.4.1-8)
z .
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where

ro= (0_523z“3+ 0.477z-1) 415

Fig. 3.4.1-6 shows a comparison of Vm/VO in the three cases
mentioned, reference [32] , [9] and [24]. In all three
situations, the size of the opening is h/H = 0.00l5 and it is
seen that this ratio does not clearly describe the center line
velocity that will take place in the wall Jet. Results from
the linear diffusers used in air conditioning will undoubtly

indicate even greater dispersion in Vm/VO as a function X, -

Fig., 3.4.1-6 also shows prediction of the velocity decrease

in the jet rumning along the perimeter of the room. In the
full-drawn curve Schwarz' and Cosart's wall Jjet [52] is used

as boundary conditions while in the case of the dotted curve

it is Forthmann's wall Jet [9] that is used as boundary condi-
tions. It will be seen that the results of the calculations are
greatly dependent on the wall jet chosen as boundary conditions.
We can thus conclude that the ratio h/H is not quite sufficient
to characterize the supply opening, and this must be borne in
mind when comparing with measuring results taken from tests in

IrOOomlS .«

Matters may become further complicated by the fact that Vm/VO
may be somewhat dependent on the length L/H. Urbach [54] has
established this dependency with the relatively large supply
opening, h/H = 0.02, in models having a width of W/H = 1l.o.

If this effect is present at more realistic h/H and W/H ratios,

it can be suppressed to a large extent by selecting a small Xy

» . H
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Fig. 3.4.1-6. Decay of center line velocity in a wall jet
according to three different references. Center line |
velocity in a closed room using two of the different

wall Jjets as boundary conditions is also shown. h/H =
0.00l5, L/H = 3.0, uw/H = 0.1, 15 x 21 B and Re = 2140.
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3.4,2. Predictiong at high Archimedes numbers.

We shall now look at some predictions where the Archimedes
number is so high that the buoyancy has a considerable influence
on the flow.

Fig. 3.4.2-1 shows the temperature and stream line distribution

in a room under the following conditions:

h/H = 0.005
xd/H = 0.08
L/E = 3.0
u/H = o.1
Re = %6oo

The dimensionless supply temperature is T; = 0, and the return
temperature is (TO + ATO)* = 1. Ceiling and wall are adiagbatic
while a constant heat flux is supplied through

the floor. These boundary values are stated as gradients on
the respective surfaces, see fig. 3.4.2-1 at the top.

The contribution from buoyancy to the vorticity appears from ,
the last term of the equation (3.1-15). It will be seen that
it is proportional to the horizontal temperature gradient, 5
which also seems physically reasonable. The upper section on i
fig. 3.4.2-1 shows the dimensionless temperature distribution
given at low Archimedes numbers. The temperature distribution i
shows, in particular, steep horizontal gradients on the left
side of the room below the supply opening. The lower section

on the figure shows the stream line distribution in the case

of Ar = C and Ar = 4 - 10—4. We see that there 1s a big change
in stream line distribution in the area with steep horizontal

- temperature gradients. The maximum value of the stream functilon
rises from about 7 to about 8.5 with this increase in the
Archimedes number.

Fig. 3.4.2-2 shows the stream line distribution in -a room, T
where the wall opposite the supply opening may have a constant :
temperature as boundary value. This temperature may be higher
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Fig. 3.4.2-1. Temperature distribution. Stream line
distribution at low and high Archimedes number.

h/H = 0.005, xd/H = 0.08, L/H = 3.0, u/H = 0.1,

1% x 174 and Re = 3600.
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or lower than the supply temperature. This corresponds, for
example, to a window exposed to either low outdoor temperatures
or direct solar radiation. The other surfaces are considered
adiabatic. The predictions apply to the following geometry

and Reynolds number. '

h/H = o0.005
Xd/H = 0.08
I/H = 3.0
u/H = o.1
Re = %boo.

The upper figure shows the stream line distribution in the case
of igothermal flow. The next figure shows the flow pattern
when the end wall 1s celder than the supply air. It will be
seen that cool downdraught has removed the recirculating flow
at the bottom corner. The lower figure shows the situation
where the end wall is warmer than the supplied air. The warm
current rising in front of the surface creates an area of
recirculating flow and the inJjected jet leaves the ceiling
before it reaches the end wall. The flow conditions are in
accordance with the measurements made by Miller and Nash [25]
in a somewhat similar situation. They use the ADPT index

to express the +thermal comfort in different

situations. They -show that it 1s advantageous to ralise the
velocity to a level such that there will only be a small ares
of recirculating flow in front of the warm end wall.

By comparing the isothermal stream line distribution in fig.
3.4.2-2 with the stream line distribution in fig. 3.4.1~1 we
can estimate the influence from changes in the position of
the return opening. The maximum value of the stream function
¢;1 ig, in practice, independent of the position of the
return opening. If the return opening is moved from one end
wall to the other the amount of recirculating zir in the
lower part‘of the room will change by¢*= 1, corresponding
to the injected amounts. The change in air velocity in the
occupied zone will thus be of the magnitude 1/¢¥ .
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wall. h/H = 0.005, xd/H = 0.08, L/H = 3.0, u/H =
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If|p;‘ is suitably high, as is the case with small supply
openings, see fig. 3.4.1-4, the influence from the position
of the return opening will be small. This is the case in
practice, where the supply opening is often of the size h/H<
0.01,

Fig. 3.4.2-3 shows the horizontal velocity profile at the end
wall in the three situations examined on fig. 3.4.2-2. With
isothermal flow the profile can be characterized as a wall Jet.
In the case of a cold surface the maximum velocity is increased.
The buoyancy generates a strong vofticity in the

shear layer at the surface where the horizontal temperature
gradients are greatest. This vorticity gives the shown change
in the shape of the profile, and a typical velocity profile
for downdraught is obtained. In the case of a warm surface the
vorticity changes sign and gives the correspohding change in
profile. The three profiles represent the same volume flow
because the maximum value of the stream function cpgl is the
same in all three situations.

%.5. Extension of the prediction method.

One of the cobjects of predicting the flow conditions in an air
conditioned room is to obtain information on the level of
thermal comfort in different areas of the room. This can be
done by examining the various factors: air temperature, mean
radient temperature and air velocity. It is obvious, however,
to extend the prediction method so that it integrates these
physical quantities into a single variable, which in itself
expresses the level of thermal comfort in the area. To this
end we can use the distribution of "Predicted Percentage of
Digsatisfied" persons — PPD - an index developed by Fanger [8].
The previously mentioned ADPI-index can also be used to make
an integrated estimation of the thermal comfort conditions of
a room, see Nevins and Miller [28] .
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Fig. 3.4.2-%. Velocity profiles at the right end
wall (XQ/H = 0.37) for three different temperatures
of the wall. Same conditions as in fig. 3.4.2-2.
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The predicdtion method can also be extended to apply to other
physical factors. Transport equations of the same type as ‘
(23.1-17) can be derived for humidity in air. Solution of a

set of equations containing this equation will be of interest

in connection with the design of, for example, cold stores.
Similarly, a transport equation for the concentration of particles
in air could be used to examine the flow conditions in "clean

rooms", operating theatres etec.
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4. Numerical prediction of convective heat transfer in

cavities.

Heat transfer in a cavity is a subject which is of interest
in connection with insulation of buildings. In this section
will be shown some results of numerical prediction of this
type of heat transfer. -

In cavity wall insulation, double glazing and similar applica-
tions, laminar flow exists under normal temperature conditions,
and we shall confine us to this type of flow. '

The flow conditions are dependent on the orientation of the
hot and cold surfaces compared to the direction of gravity.
In the following predictions the surfaces are placed parallel
to the direction of gravity.

Dropkin and Somerscales [ 7] together with Probert et al.[29]

have discussed the effect when the surfaces form and angle to

the gravitational acceleration. Horizontal surfaces with the

hot surface at the bottom have been studied by, among others,
Wantland [36] . When the hot surface is uppermost, a convective
current may be created by a temperature distribution which wvaries
over the surface. This has been studied by Berkovsky and é
Fertman [4] . Also relevant is a study made by Bankwvall [2] |
regarding flow in cases where the cavity is filled with an
insulating material. '

4.1. Basic equations and boundary conditions.

The set of equations, which describes steady two~dimensional
laminar flow, 1is

2 2
3 ﬂ)i(@u) _ (8_w+am)
ax1(u18x2 dxy w8x1 Ho axf Bx%

+p°Bgz

'al (4.1-1)
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These equations are identical to the equations (3.1-15), (3.1-16),
and (3.1-17), apart from the following points: They contain

the viscous stress terms in (4.1-1) and the molecular diffusion
terms in (4.1-%), while the corresponding turbulent contri-

butions are disregarded.

The boundary conditions for this set of equations are given
on fig. 4.1-1. The cavity is characterized by a height H and
a width W.

The gravitational acceleration acts in the direction of the
xg—axis. The stream function has a constant value ¢ = O along
the whole closed surface. The boundary conditions for the
vorticity are given from the value of the stream function at
near wall node and wall node, see Gosman et al.[ll]. The
vertical surfaces have constant temperatures and the horizon-

tal surfaces are adiabatic

Since the solution domain is surrcunded by a closed
surface, it is appropriate to select other reference values
than those used in the foregoing chapters. The following
dimensionless numbers together with boundary conditioms will
specify the flow in the case of convective heat transfer.

pr . Mol (4,1-8)

ngg B ATOW3

(4.1-5
RS )

Gr,, =
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Fig. 4.1-1. Cavity with specification of dimensions

and boundary conditions.
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ATO is defined on fig. 4.1-1.

When calculating heat transfer the Rayleigh number Raw is
often used as a wvariable

Ra. = Gr,, - Pr (4.1-6)

The heat transfer in the cavity is given by the Nusselt
number. This number is the ratio between the actual heat
transfer and that which would take place, if there wereonly
conduction,

Nu., = X W (4.1-7)

Nis the coefficient of convective heat transfer. In the

predictions«is given by the following expression

W ATgH = - (a—T_) A dx, (4.1-8)
X =

4,2. Results.

Fig. 4.2-1 shows stream lines and temperature distribution in
a cavity having the ratio H/W = 1.0.The stream lines are given for
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0.2, 0.4, 0.6 and 0.8 times ¢y, and the isotherms for 0.2, o.4,
0.6 and 0.8 times AT,. '

At a Grashof number below lo2 there is pure conduction and the
isotherms are straight lines which are equally spaced. The
first prediction illustrated, applies to a Grashof number of
2.4 - 105. It will be seen, that the isotherms are slightly
deformed by the flow and a small part of the heat transfer
takes place by means of convection. If the Grashof number is

increased to 3% - lo4

a further change in the distribution of
the isotherms is noticed and the maximum value of the stream

funetion will increase.

While the flow at er = 2.4 105 may be characterized as
asymptotic, reference [20] , the flow at a Grashof number of
3 . loq.and lo5 is a laminar boundary layer flow. This is
confirmed by the fact, that the isotherms are close at the
vertical surfaces, indicating that there are large gradients
at the surfaces and small ones in the middle of the cavity.
The stream function shows two maxima, as have also been found
by MacGregor and Emery [20] .

Fig. 4.2-2 shows the predicted heat transfer in cavities

with different dimensions. For comparison purposes predictions
by MacGregor and Emery [20] are shown for H/W = 1.0 and 10.0.
An increase in H/W reduces the heat transfer through the
cavity, as is seen from the results for H/W = 1.0 and 10.0

and also from the results in [20] .

It is also evident that the heat transfer is reduced if the
ratio H/W is reduced in the range H/W< 1.0. This is because
the convective flow is greatly restricted by the horizontal
surfaces. In practice however, it should be borne in mind

that horizontal surfaces give rise to conductive heat transfer.
Predictions are made for Rayleigh numbers up to ~ 105. At a
Rayleigh number of 106 the flow will become unsteady and in
the range Ra_>1o’ the flow is turbulent.
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5. Sumnmary.

Air distribution in air conditioned rooms is investigated by
model experiments and by numerical solutions of the flow

equations.

The theory of similarity for the flow in air conditioned rooms
and models is derived from the flow equations and include
evaluations of thermal radiation.

A model (6o x 60 x 180 cm) is made and by dividing
it into sections, isothermal air distribution is investigated
in gbout 25 different model sizes.

These experiments show that in a deep, wide model, very un-
steady flow conditions may arise. When the air supply opening
is only a fraction of the model width, steady unsymmetrical
flow may result.

In models of limited depth, (where the length of the model is
less than 3-4 times its height), steady two-dimensional flow
will take place. It is assumed that the supply opening is
located close beneath the "ceiling" and covers the full width
of the model. '

Stream line measurements are made by illuminating metaldehyde
particles and photographing or filming the flow. In a model
which indicates steady two-dimensional flow, velocity profiles
are also measured at different Reynolds numbers.

It is found that the velocity and stream line distributionsare
- similar at the various Reynolds numbers covered by the investi-
gation.

Temperature distribution is determinéd by a series of tests
in which heat is supplied from the bottom of the model.




- 109 -~

Numerical solution of the flow equations is used to predict
the air distribution in a section where the flow may be con-
sidered steady and two-dimensional. Comparisons are made
between predicted values and values measured by full-scale

and model-scale experiments. Comparison with test results
shows that the prediction method used is suitable for investi-
gationr of air distribution in air conditioned rooms.

The method fully takes account of situations where the free
convection is significant compared to the forced convection.
For instance an example is given of air distribution in a room
into which air is injected from one end wall while along the
other end wall air is forced thermally up or down, governed by
temperature differences.

The prediction method provides everywhere in the room the
information necessary for evaluation of thermal comfort, i.e.
air velocity, air temperature, surface temperature, velocity-
and temperature gradients and turbulent kinetic energy.

Finally, it is shown how convective heat transfer in a cavity

is predicted by means of a numerical method.
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Appendix I. Low ngnoldslnumber flow.

Jones and Launder [13] have developed a set of equations with
a turbulence model suitable for both low and high Reynolds
number flow. In principle, this set of equations differs from
the one used here in the following points: It contains the
viscous stress terms and the molecular diffusion terms in the
transport equations, and the coefficients Cu and C, are:

functions of a turbulent Reynolds number.

The turbulent Reynolds numberuis'a local. parameter that can

be expressed as

1 W
R, = — i | (I-1)
Cu llo )

et

The coefficients cy and c, are given as the following functions
of the turbulent Reynolds number, Launder [16] . (

o)
=
i

0.09 exp( -3.0/(1+R, /50)?) (1-2)

2.0(1-0.3 exp(-Rf }) (I-2)

[
i

A model of turbulence for high Reynolds number flow may be
congidered as a special version of the above mentioned model.
When the turbulent Reynolds number exceeds 400, the contribu-
tions from the viscous stress terms and molecular diffusion
terms are negligible compared to the turbulent contributions.
From formulas (I-2) and (I-3) it will be seen, that cy and c,
have attained their constant values for Rt 2 d4oo, and the two
models of turbulence are identical.

This means that a prediction in which the turbulent Reynoclds
number is greater than 4oc in every point of the flow domain
is correctly described by the turbulence model used in section

5.
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For Cy = 0.09 and Rt>»4oo the following condition is obtained
by meang of formula (I-1).

by > 40 . K, (T~4)

The turbulent Reynolds number at a point, Rt, increases with
an increase in the Reynolds number Re, but it is also a
function of the geometry of the room. In a prediction specified
by

h/H = 0.005

L/H = 3.0

uw/H = 0.1

Rt is greater than 400 at Re = 18cc. If h/H is increased to
0.056, it is necessary to raise the Reynolds number to about
4o00-5000 in order to obtain an Rt greater than Zoo. In both
cases there exists, even at high Reynolds numbers, a very small
area at the end wall opposite the injected Jjet where Rt is less
than 40o. This is assumed to be negligible

Near the surfaces the viscous stress and the molecular diffusion
will always be of significance, but these effects are taken
into account through the wall functions.
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Appendix II. Choice'of grid distribution.

In section 4 a grid having a constant distance between nodes is
used. The accuracyrof the results is evaluated, making predic-
tions for the grid with various numbers of points and obser-
ving how the predicted value appfoaches a fixed value at an
increasing number of points. Although the difference between
the predicted and the analytical solution decreases with an
increase in the number of points the accumulated round-off
error on the computer will increase. Therefore, an optimum
number of grid points exists, beyond which the predicted
solution diverges with a further increase in the number of points.
Experiments with grids of the type 11 x 11, 15 x 15, 17 x 17,
2l x 21, and %l x 31 all gave a Ym which only deviated 1-2 %
for Gr = lol‘L and H/W = 1l.o. This implies that a grid of the
type 11 x 11 is sufficient for practical predictions.

In section % a grid with non-uniform distance between the nodes
is used. The gradients are, in some areas, so large that we must
rule out the use of a grid with uniform node distance if we wish
to confine ourselves to a number of nodes of about %00, and this
is necessary (in 1971-73) taking the number of difference equa-
tions into consideration.

A primary rule in the distribution of nodes is to place them
close together where velocity gradients are large, i.e. wherew is
great. Velocity gradients occur 1n source terms in the k- and

€ —equations and therefore have great influence on the turbulence,
Generally speaking, this means that the greatest number of

nodes is in the Ko direction, and that they are very close
together at the uppermost surface and fairly close together at

the lowest surface.

Two types of grids are used. Grids of type A having a rather
great number of nodes close to the surfaces, and type B having

a more even distribution, though still with small node distance
cloge to the surfaces compared to the node distance in the
middle of the area.
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In the case of h/H = 0.005 and Re = 1800 the variation in ¢m

is less than 7 % for grids of the type 13 x 174, 15 x 214 and
15 x 21B. It must be borne in mind that the node distribution
along surface "a" on fig. 3.3.1-1 is different for each grid
type, and this has a great influence on the results. If surfaces
"a" and "b" are given a suitable location, fig. %.5.1-1, it

is possible especiaily with a grid of the type 15 x 21B, to
obtain a continuous progression of the velocity profile, see
figs.?3.4.1-2 and 3.4.,1-6.

Since the computer time is increased considerably when the
number of points exceeds approx. 4oo, it has proved necessary
to develop the grid distribution by comparing the predictions
obtained with measuring results.




Appendix III. Turbulent viscosity and dissipation in
a wall jet.

By means of the measured_values for the mean velocity V1,
turbulent kinitic energy k and the intensity v{vé in a wall
jet, Verhoff [35] and Nelson [27], it is possible to calculate
turbulent viscosity and dissipation. The turbulent viscosity

may be determined from the Boussinesq hypothesis.

-PoVivy = ut-_4 7 : (III—l)

- This hypothesis assumes that there is a vanishing shear stress
at the velocity maximum. This is not the case in asymmetrical
“jets such as wall jets, and if By is determined according to”
(I1I-1) it will thus approach plus and minus infinity around
the velocity maximum in the wall jet. Uppérmost in fig. III-1
this progression is shown with the dotted curve as a function
of g wherevwis a dimensionless thickness of the wall jet.

(I1I-2)

If the turbulence length scale is determined by the calculated
Ht distribution and by the formula

0.5 :
Vo= py/e ko, (ITI-3)
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we get the distribution shown by the dotted curve at the
bottom of fig. III-1.

Tt is not reasonable to use these values as boundary values,
since they assume conditions which are disregarded in the model
of turbulence. Instead we shall develop some new values based
on the length scale and the following points:

1. The length scale is proportional to the distance from
the wall in the near wall area.

2. In the range ® > 0.5 the results are not disturbed
by the definition problems, and the length scale has
a constant value.

The chosen length scale is shown on the lower figure. This length
scale is used to determine p; according %o (II1-3), and the
result is the curve on the upper figure. In addition the length
scale is used to determine the distribution of the dissipation
according to the formula

/
€ = Kk 312 /1 (IIT-4)
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Fig. III-1. Distribution of turbulent viscosity
and turbulent length scale in a wall jJet.







