

Challenges in Evaluating Turbulence Models with Benchmark Cases

Chris Sideroff and Prof. Thong Dang

ASHRAE Summer Meeting - Denver, CO June 27, 2005

Background

- Why is turbulence modeling important in the Personal Micro-Environment (PME)?
 - □ Is almost always encountered in PME flows
 - □ Turbulence is often on the same order as the mean flow
 - □ Important for other assessments (thermal comfort, personal exposure)
- □ Why is turbulence modeling difficult in the PME?
 - Few canonical benchmark cases with high fidelity data of known error to validate models
 - □ Often involve one or several known problematic turbulent phenomena
 - i. Jet flows
 - ii. Transitional Reynolds number flows
 - iii. Thermal buoyancy
- □ Example: PME benchmark case
 - Displacement ventilation with standing heated manikin

Displacement Ventilation Set-up

- □ Standing thermal manikin in displacement type ventilation
- Flow now has a low-speed wall jet, thermal buoyancy and recirculating room flow

Standing Thermal Mannequin in Disp. Type Ventilation: side view

Standing Thermal Mannequin in Disp. Type Ventilation: front view

CFD Calculations - Thermal Plume

□ Thermal plume of v^2 -*f* much thicker than standard *k*- ε

NY STAR Center for Environmental Quality Systems

□ Data as well LES confirmed that v^2 -*f* better predicts thermal plume

Ε-

0

Large-Luuy Simulation – Incinat

Large Eddy Simulation (dynamic Smagorinsky-Lilly)

- \Box ~7 million cells
- $\Box \Delta t = 1/5000$ sec. (min. cell length / max. velocity)
- □ 180 sec. (flow-time) then saved 20 sec. (flow-time) data

Experimental Data – Thermal Plume

- PIV measurements near the manikin
- □ v^2 -*f* predicts shape of thermal boundary layer much better than standard *k*- ε

015

□ Spike in data horizontal velocity at face

Vertical Velocity: CFD – v²-f, CFD – ske, Kato PIV dataO

Horizontal Velocity: CFD – v²-f, CFD – ske, Kato PIV data O

Displacement Ventilation – Inlet Jet

- □ Ultra-sonic anemometer measurements
- Experimental data shows rapid decay of CL jet velocity
- Predictions show CL jet velocity decreases slower

Axi-Symmetric Free Jet

- Looked at two fundamental jet problems to evaluate turbulence models
 - □ Axi-symmetric free jet
 - □ 3D wall jet (unconfined)
- RANS models can predict the important features of the axisymmetric free jet:
 - □ Spread rate
 - □ Centerline velocity decay

	Experiment	Standard <i>k-ε</i>	v²-f	RSM
Spread rate	0.10	0.123	0.090	0.113
В	6.0	4.93	6.33	5.18

3D Wall Jet

- Eddy-viscosity RANS models have difficulty predicting the 3D wall jet
- □ Experiments show lateral spreading rate 5-6x higher than normal
- Due to creation of streamwise vorticity from imbalance of fluctuating normal Reynolds stresses (Kraft and Launder JFM 2001)

3D Unconfined Wall Jet Schematic: figure from Kraft & Launder JFM 2001

	Exp.	Standard <i>k-ɛ</i>	v²-f	RSM
$\frac{Av_{1/2}}{dz}$	0.065	0.089	0.078	0.050
$\frac{Lateral}{dx_{1/2}}$	0.320	0.085	0.076	0.646
Ratio	4.92	0.96	0.96	12.92

Confined 3D Wall Jet

- 3D jet from inlet confined by walls spread and decay rates affected by walls
- Investigated this affect by using same displacement room without manikin

Velocity Magnitude: CFD – v^2 -f, CFD – ske, CFD – RSM, Kato U-S Anen, data \odot

Inlet Non-Uniformity

- □ Inlet not uniform and average magnitude less than assumed
- Including non-uniformity did not improve prediction normalized profiles nearly the same

Normalized Centerline Velocity along Floor

Normalized Velocity Magnitude: **CFD – RSM**, **Kato U-S Anen, Data** \circ

Inlet Velocity Angle

- □ Magnitude was measured at the inlet but no components
- RSM could not account for low centerline velocities of data
- Varying the direction of inlet velocity angle could account for difference

Summary & Questions

- \Box v²-f predicts thermal plume better the standard k-e
- □ v^2 -f and standard k- ε OK for axi-sym. jet but not for 3D wall jet need full Reynolds stress
- RSM can not explain the trend in the centerline velocity data
- □ What is the interaction between the inlet jet and the thermal plume?
- Reliable measurement of mean and turbulence flow quantities with know error estimates - needed for validation of PME flows

Acknowledgments

- □ Syracuse Center of Excellence in Environmental Systems
- □ Environmental Quality Systems Center at Syracuse University
- □ US Environmental Protection Agency (EPA)

