

Verification and Validation of CFD for the Personal Micro-Environment

PhD Candidate: Chris Sideroff Professor: Thong Dang

ASHRAE Summer Meeting, Salt Lake City, UT June 21-25, 2008

Purpose

"Better" Indoor Air Quality

- □ For high IAQ need to address:
 - Source control
 - ♦ Air-cleaning
 - New ventilation approaches (e.g. PV)
- Ventilation systems involving localized gradients are difficult to design with traditional IAQ methods
- Need to look beyond conventional techniques

Overview

- □ Extend CFD verification solving the equations right
 - Grid dependency
 - ♦ Iterative convergence
- □ Extend CFD validation *solving the right equations*
 - ◆ Turbulence modeling
 - Heat transfer models
- Contributions of convection radiation
- □ Including effects of radiation
- □ Future applications

Current State-of-the-Art

- □ In open literature, grid resolutions are typically on the order of a few hundred thousand (for 3D) \rightarrow <=10K surface points
- Traditional turbulence models
 - zero-equation (mixing length)
 - k-ε family
- □ Single-point, omni-directional measurements
 - velocity magnitude and rarely components
 - no turbulence information (length scale, intensity)
 - minimal (or no) error estimation
- Rarely detailed measurements of other quantities (contaminant, temperatures)
- □ Steady-state
 - Some breathing work, usually steady inhalation/exhalation
 - Very little investigations of body motions
- □ Very active area of research regular symposiums

Benchmark Case

- □ Inlet vent (front, bottom) = 0.2 m/s (33 CFM), 22° C (72° F)
- □ Heat loss from body = 76 W (4.3 BTU/min) and insulated walls

Displacement Ventilation ...

... Stratified Flow

Grid Convergence

- □ Velocity sensitive to BL resolution in near field
- □ Contaminant sensitive to BL resolution in near field (not shown)
- Grid convergence demonstrated by two finest grids
- □ ~60K surface pts with layers of BL cells

Iterative Convergence

- □ Averaged residuals not good convergence indicator
- □ Two interdependent flow structures plume and recirculating flow
- □ Monitor velocity at strategic points

Inlet Streamlines - Recirculating Flow

Convergence of Velocity at pts A and B

Experimental Comparison

- □ RANS models over-predict the magnitude and mis-predict shape
- □ LES marginally better
- □ Missing physics? Assumed ½ total heat transfer due to convection

Radiative Heat Transfer

- □ Marked improvement over convection only results
- □ RANS provide nearly same results as LES
- □ Ratio of heat transfer modes: 38% convection / 62% radiation

Convection/Radiation Ratio

- □ Commonly assumed 50/50
- □ Calculation including radiation shows 38/62

 \Box T_{manikin} \uparrow but also T_{wall} \uparrow

Radiative Heat Transfer

- □ Major human heat transfer mechanisms: convection and radiation
- □ If any heat-flux BC is used *can not* neglect radiation

Effects of Radiation

- \Box Radiation only involves surfaces \rightarrow use surface temperature instead
- Detail description of temperature difficult
- $\hfill\square$ Averaged surface temperature \rightarrow minimal impact on PME flow

Summary

- □ ~60K surface points + BL resolution = RANS models sufficient
- □ Radiation (or effect) is key and should not be neglected
- □ Adjusting convection/radiation ratio not sufficient
- If PME flow not thermal comfort of interest, averaged surfaces temperature adequate

Applications

- □ CFD evaluation of personal ventilation in aircraft cabins
- □ Investigate the effects of common realistic details often ignored
 - ♦ Breathing
 - Motion
 - Motion + breathing
- □ Improving conventional air-terminal devices

Personal Ventilation in Aircraft Cabin

Effects of geometry description, grid resolution and turbulence model on personal ventilation in aircraft cabin

Reference:

Dang 2008 "On the Requirements for Accurate CFD Simulations of the Personal Micro-Environment" ASHRAE SLC 2008 – Seminar 68.

Realistic Details

- □ Breathing appears to have minimal influence on exposure
- □ Motion has some affect on exposure
- Small amounts re-inhaled air in agreement w/ Melikov and Kaczmarcyzk (2007)

Velocity Contours

Reference:

Sideroff & Dang 2008 "CFD Study of the Effects of Breathing & Head Motion on the PME" Indoor Air 2008, Denmark

Co-flowing Jet Personal Ventilation

Investigate improvements to conventional personal ventilation devices – co-flowing jet

Experimental and Computational Configuration

left - w/ co-flow; right w/o co-flow

Reference:

Russo, Dang and Khalifa 2008 "Computational Analysis of Personal Ventilation Jets" Indoor Air 2008, Denmark